173 lines
4.1 KiB
C
173 lines
4.1 KiB
C
![]() |
#include "3dmath.h"
|
||
|
|
||
|
void m4x4_identity(matrix_4x4* out)
|
||
|
{
|
||
|
m4x4_zeros(out);
|
||
|
out->r[0].x = out->r[1].y = out->r[2].z = out->r[3].w = 1.0f;
|
||
|
}
|
||
|
|
||
|
void m4x4_multiply(matrix_4x4* out, const matrix_4x4* a, const matrix_4x4* b)
|
||
|
{
|
||
|
int i, j;
|
||
|
for (i = 0; i < 4; i ++)
|
||
|
for (j = 0; j < 4; j ++)
|
||
|
out->r[j].c[i] = a->r[j].x*b->r[0].c[i] + a->r[j].y*b->r[1].c[i] + a->r[j].z*b->r[2].c[i] + a->r[j].w*b->r[3].c[i];
|
||
|
}
|
||
|
|
||
|
void m4x4_translate(matrix_4x4* mtx, float x, float y, float z)
|
||
|
{
|
||
|
matrix_4x4 tm, om;
|
||
|
|
||
|
m4x4_identity(&tm);
|
||
|
tm.r[0].w = x;
|
||
|
tm.r[1].w = y;
|
||
|
tm.r[2].w = z;
|
||
|
|
||
|
m4x4_multiply(&om, mtx, &tm);
|
||
|
m4x4_copy(mtx, &om);
|
||
|
}
|
||
|
|
||
|
void m4x4_scale(matrix_4x4* mtx, float x, float y, float z)
|
||
|
{
|
||
|
int i;
|
||
|
for (i = 0; i < 4; i ++)
|
||
|
{
|
||
|
mtx->r[i].x *= x;
|
||
|
mtx->r[i].y *= y;
|
||
|
mtx->r[i].z *= z;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void m4x4_rotate_x(matrix_4x4* mtx, float angle, bool bRightSide)
|
||
|
{
|
||
|
matrix_4x4 rm, om;
|
||
|
|
||
|
float cosAngle = cosf(angle);
|
||
|
float sinAngle = sinf(angle);
|
||
|
|
||
|
m4x4_zeros(&rm);
|
||
|
rm.r[0].x = 1.0f;
|
||
|
rm.r[1].y = cosAngle;
|
||
|
rm.r[1].z = sinAngle;
|
||
|
rm.r[2].y = -sinAngle;
|
||
|
rm.r[2].z = cosAngle;
|
||
|
rm.r[3].w = 1.0f;
|
||
|
|
||
|
if (bRightSide) m4x4_multiply(&om, mtx, &rm);
|
||
|
else m4x4_multiply(&om, &rm, mtx);
|
||
|
m4x4_copy(mtx, &om);
|
||
|
}
|
||
|
|
||
|
void m4x4_rotate_y(matrix_4x4* mtx, float angle, bool bRightSide)
|
||
|
{
|
||
|
matrix_4x4 rm, om;
|
||
|
|
||
|
float cosAngle = cosf(angle);
|
||
|
float sinAngle = sinf(angle);
|
||
|
|
||
|
m4x4_zeros(&rm);
|
||
|
rm.r[0].x = cosAngle;
|
||
|
rm.r[0].z = sinAngle;
|
||
|
rm.r[1].y = 1.0f;
|
||
|
rm.r[2].x = -sinAngle;
|
||
|
rm.r[2].z = cosAngle;
|
||
|
rm.r[3].w = 1.0f;
|
||
|
|
||
|
if (bRightSide) m4x4_multiply(&om, mtx, &rm);
|
||
|
else m4x4_multiply(&om, &rm, mtx);
|
||
|
m4x4_copy(mtx, &om);
|
||
|
}
|
||
|
|
||
|
void m4x4_rotate_z(matrix_4x4* mtx, float angle, bool bRightSide)
|
||
|
{
|
||
|
matrix_4x4 rm, om;
|
||
|
|
||
|
float cosAngle = cosf(angle);
|
||
|
float sinAngle = sinf(angle);
|
||
|
|
||
|
m4x4_zeros(&rm);
|
||
|
rm.r[0].x = cosAngle;
|
||
|
rm.r[0].y = sinAngle;
|
||
|
rm.r[1].x = -sinAngle;
|
||
|
rm.r[1].y = cosAngle;
|
||
|
rm.r[2].z = 1.0f;
|
||
|
rm.r[3].w = 1.0f;
|
||
|
|
||
|
if (bRightSide) m4x4_multiply(&om, mtx, &rm);
|
||
|
else m4x4_multiply(&om, &rm, mtx);
|
||
|
m4x4_copy(mtx, &om);
|
||
|
}
|
||
|
|
||
|
void m4x4_ortho_tilt(matrix_4x4* mtx, float left, float right, float bottom, float top, float near, float far)
|
||
|
{
|
||
|
matrix_4x4 mp;
|
||
|
m4x4_zeros(&mp);
|
||
|
|
||
|
// Build standard orthogonal projection matrix
|
||
|
mp.r[0].x = 2.0f / (right - left);
|
||
|
mp.r[0].w = (left + right) / (left - right);
|
||
|
mp.r[1].y = 2.0f / (top - bottom);
|
||
|
mp.r[1].w = (bottom + top) / (bottom - top);
|
||
|
mp.r[2].z = 2.0f / (near - far);
|
||
|
mp.r[2].w = (far + near) / (far - near);
|
||
|
mp.r[3].w = 1.0f;
|
||
|
|
||
|
// Fix depth range to [-1, 0]
|
||
|
matrix_4x4 mp2, mp3;
|
||
|
m4x4_identity(&mp2);
|
||
|
mp2.r[2].z = 0.5;
|
||
|
mp2.r[2].w = -0.5;
|
||
|
m4x4_multiply(&mp3, &mp2, &mp);
|
||
|
|
||
|
// Fix the 3DS screens' orientation by swapping the X and Y axis
|
||
|
m4x4_identity(&mp2);
|
||
|
mp2.r[0].x = 0.0;
|
||
|
mp2.r[0].y = 1.0;
|
||
|
mp2.r[1].x = -1.0; // flipped
|
||
|
mp2.r[1].y = 0.0;
|
||
|
m4x4_multiply(mtx, &mp2, &mp3);
|
||
|
}
|
||
|
|
||
|
void m4x4_persp_tilt(matrix_4x4* mtx, float fovx, float invaspect, float near, float far)
|
||
|
{
|
||
|
// Notes:
|
||
|
// We are passed "fovy" and the "aspect ratio". However, the 3DS screens are sideways,
|
||
|
// and so are these parameters -- in fact, they are actually the fovx and the inverse
|
||
|
// of the aspect ratio. Therefore the formula for the perspective projection matrix
|
||
|
// had to be modified to be expressed in these terms instead.
|
||
|
|
||
|
// Notes:
|
||
|
// fovx = 2 atan(tan(fovy/2)*w/h)
|
||
|
// fovy = 2 atan(tan(fovx/2)*h/w)
|
||
|
// invaspect = h/w
|
||
|
|
||
|
// a0,0 = h / (w*tan(fovy/2)) =
|
||
|
// = h / (w*tan(2 atan(tan(fovx/2)*h/w) / 2)) =
|
||
|
// = h / (w*tan( atan(tan(fovx/2)*h/w) )) =
|
||
|
// = h / (w * tan(fovx/2)*h/w) =
|
||
|
// = 1 / tan(fovx/2)
|
||
|
|
||
|
// a1,1 = 1 / tan(fovy/2) = (...) = w / (h*tan(fovx/2))
|
||
|
|
||
|
float fovx_tan = tanf(fovx / 2);
|
||
|
matrix_4x4 mp;
|
||
|
m4x4_zeros(&mp);
|
||
|
|
||
|
// Build standard perspective projection matrix
|
||
|
mp.r[0].x = 1.0f / fovx_tan;
|
||
|
mp.r[1].y = 1.0f / (fovx_tan*invaspect);
|
||
|
mp.r[2].z = (near + far) / (near - far);
|
||
|
mp.r[2].w = (2 * near * far) / (near - far);
|
||
|
mp.r[3].z = -1.0f;
|
||
|
|
||
|
// Fix depth range to [-1, 0]
|
||
|
matrix_4x4 mp2;
|
||
|
m4x4_identity(&mp2);
|
||
|
mp2.r[2].z = 0.5;
|
||
|
mp2.r[2].w = -0.5;
|
||
|
m4x4_multiply(mtx, &mp2, &mp);
|
||
|
|
||
|
// Rotate the matrix one quarter of a turn CCW in order to fix the 3DS screens' orientation
|
||
|
m4x4_rotate_z(mtx, M_PI / 2, true);
|
||
|
}
|