VRAM allocator enhancements, see details:

- Added proper handling for VRAM banks (A and B, 3 MiB each)
- Allocations no longer cross VRAM bank boundaries
- Added vramAllocAt, vramMemAlignAt
This commit is contained in:
fincs 2021-08-26 23:42:08 +02:00
parent 48967dc417
commit 6360f4bdb1
No known key found for this signature in database
GPG Key ID: 62C7609ADA219C60
4 changed files with 112 additions and 41 deletions

View File

@ -4,6 +4,13 @@
*/
#pragma once
typedef enum vramAllocPos
{
VRAM_ALLOC_A = BIT(0),
VRAM_ALLOC_B = BIT(1),
VRAM_ALLOC_ANY = VRAM_ALLOC_A | VRAM_ALLOC_B,
} vramAllocPos;
/**
* @brief Allocates a 0x80-byte aligned buffer.
* @param size Size of the buffer to allocate.
@ -11,6 +18,14 @@
*/
void* vramAlloc(size_t size);
/**
* @brief Allocates a 0x80-byte aligned buffer in the given VRAM bank.
* @param size Size of the buffer to allocate.
* @param pos VRAM bank to use (see \ref vramAllocPos).
* @return The allocated buffer.
*/
void* vramAllocAt(size_t size, vramAllocPos pos);
/**
* @brief Allocates a buffer aligned to the given size.
* @param size Size of the buffer to allocate.
@ -19,6 +34,15 @@ void* vramAlloc(size_t size);
*/
void* vramMemAlign(size_t size, size_t alignment);
/**
* @brief Allocates a buffer aligned to the given size in the given VRAM bank.
* @param size Size of the buffer to allocate.
* @param alignment Alignment to use.
* @param pos VRAM bank to use (see \ref vramAllocPos).
* @return The allocated buffer.
*/
void* vramMemAlignAt(size_t size, size_t alignment, vramAllocPos pos);
/**
* @brief Reallocates a buffer.
* Note: Not implemented yet.

View File

@ -27,18 +27,9 @@ static bool linearInit()
void* linearMemAlign(size_t size, size_t alignment)
{
// Enforce minimum alignment
if (alignment < 16)
alignment = 16;
// Convert alignment to shift amount
int shift;
for (shift = 4; shift < 32; shift ++)
{
if ((1U<<shift) == alignment)
break;
}
if (shift == 32) // Invalid alignment
// Convert alignment to shift
int shift = alignmentToShift(alignment);
if (shift < 0)
return nullptr;
// Initialize the pool if it is not ready

View File

@ -2,6 +2,15 @@
#include <3ds/types.h>
#include <stdlib.h>
static inline int alignmentToShift(size_t alignment)
{
if (alignment < 16)
alignment = 16;
else if (alignment & (alignment - 1))
return -1; // Not a power of two
return __builtin_ffs(alignment)-1;
}
struct MemChunk
{
u8* addr;

View File

@ -9,60 +9,107 @@ extern "C"
#include "mem_pool.h"
#include "addrmap.h"
static MemPool sVramPool;
static MemPool sVramPoolA, sVramPoolB;
static bool vramInit()
{
auto blk = MemBlock::Create((u8*)OS_VRAM_VADDR, OS_VRAM_SIZE);
if (blk)
{
sVramPool.AddBlock(blk);
rbtree_init(&sAddrMap, addrMapNodeComparator);
if (sVramPoolA.Ready() || sVramPoolB.Ready())
return true;
auto blkA = MemBlock::Create((u8*)OS_VRAM_VADDR, OS_VRAM_SIZE/2);
if (!blkA)
return false;
auto blkB = MemBlock::Create((u8*)OS_VRAM_VADDR + OS_VRAM_SIZE/2, OS_VRAM_SIZE/2);
if (!blkB)
{
free(blkA);
return false;
}
return false;
sVramPoolA.AddBlock(blkA);
sVramPoolB.AddBlock(blkB);
rbtree_init(&sAddrMap, addrMapNodeComparator);
return true;
}
static MemPool* vramPoolForAddr(void* addr)
{
uintptr_t addr_ = (uintptr_t)addr;
if (addr_ < OS_VRAM_VADDR)
return nullptr;
if (addr_ < OS_VRAM_VADDR + OS_VRAM_SIZE/2)
return &sVramPoolA;
if (addr_ < OS_VRAM_VADDR + OS_VRAM_SIZE)
return &sVramPoolB;
return nullptr;
}
void* vramAlloc(size_t size)
{
return vramMemAlignAt(size, 0x80, VRAM_ALLOC_ANY);
}
void* vramAllocAt(size_t size, vramAllocPos pos)
{
return vramMemAlignAt(size, 0x80, pos);
}
void* vramMemAlign(size_t size, size_t alignment)
{
// Enforce minimum alignment
if (alignment < 16)
alignment = 16;
return vramMemAlignAt(size, alignment, VRAM_ALLOC_ANY);
}
// Convert alignment to shift amount
int shift;
for (shift = 4; shift < 32; shift ++)
{
if ((1U<<shift) == alignment)
break;
}
if (shift == 32) // Invalid alignment
void* vramMemAlignAt(size_t size, size_t alignment, vramAllocPos pos)
{
// Convert alignment to shift
int shift = alignmentToShift(alignment);
if (shift < 0)
return nullptr;
// Initialize the pool if it is not ready
if (!sVramPool.Ready() && !vramInit())
// Initialize the allocator if it is not ready
if (!vramInit())
return nullptr;
// Allocate the chunk
MemChunk chunk;
if (!sVramPool.Allocate(chunk, size, shift))
bool didAlloc = false;
switch (pos & VRAM_ALLOC_ANY)
{
default:
break;
case VRAM_ALLOC_A:
didAlloc = sVramPoolA.Allocate(chunk, size, shift);
break;
case VRAM_ALLOC_B:
didAlloc = sVramPoolB.Allocate(chunk, size, shift);
break;
case VRAM_ALLOC_ANY:
{
// Crude attempt at "load balancing" VRAM A and B
bool prefer_a = sVramPoolA.GetFreeSpace() >= sVramPoolB.GetFreeSpace();
MemPool& firstPool = prefer_a ? sVramPoolA : sVramPoolB;
MemPool& secondPool = prefer_a ? sVramPoolB : sVramPoolA;
didAlloc = firstPool.Allocate(chunk, size, shift);
if (!didAlloc) didAlloc = secondPool.Allocate(chunk, size, shift);
break;
}
}
if (!didAlloc)
return nullptr;
auto node = newNode(chunk);
if (!node)
{
sVramPool.Deallocate(chunk);
vramPoolForAddr(chunk.addr)->Deallocate(chunk);
return nullptr;
}
if (rbtree_insert(&sAddrMap, &node->node));
return chunk.addr;
}
void* vramAlloc(size_t size)
{
return vramMemAlign(size, 0x80);
}
void* vramRealloc(void* mem, size_t size)
{
// TODO
@ -81,7 +128,7 @@ void vramFree(void* mem)
if (!node) return;
// Free the chunk
sVramPool.Deallocate(node->chunk);
vramPoolForAddr(mem)->Deallocate(node->chunk);
// Free the node
delNode(node);
@ -89,5 +136,5 @@ void vramFree(void* mem)
u32 vramSpaceFree()
{
return sVramPool.GetFreeSpace();
return sVramPoolA.GetFreeSpace() + sVramPoolB.GetFreeSpace();
}