#include "3dmath.h" void m4x4_identity(matrix_4x4* out) { m4x4_zeros(out); out->r[0].x = out->r[1].y = out->r[2].z = out->r[3].w = 1.0f; } void m4x4_multiply(matrix_4x4* out, const matrix_4x4* a, const matrix_4x4* b) { int i, j; for (i = 0; i < 4; i ++) for (j = 0; j < 4; j ++) out->r[j].c[i] = a->r[j].x*b->r[0].c[i] + a->r[j].y*b->r[1].c[i] + a->r[j].z*b->r[2].c[i] + a->r[j].w*b->r[3].c[i]; } void m4x4_translate(matrix_4x4* mtx, float x, float y, float z) { matrix_4x4 tm, om; m4x4_identity(&tm); tm.r[0].w = x; tm.r[1].w = y; tm.r[2].w = z; m4x4_multiply(&om, mtx, &tm); m4x4_copy(mtx, &om); } void m4x4_scale(matrix_4x4* mtx, float x, float y, float z) { int i; for (i = 0; i < 4; i ++) { mtx->r[i].x *= x; mtx->r[i].y *= y; mtx->r[i].z *= z; } } void m4x4_rotate_x(matrix_4x4* mtx, float angle, bool bRightSide) { matrix_4x4 rm, om; float cosAngle = cosf(angle); float sinAngle = sinf(angle); m4x4_zeros(&rm); rm.r[0].x = 1.0f; rm.r[1].y = cosAngle; rm.r[1].z = sinAngle; rm.r[2].y = -sinAngle; rm.r[2].z = cosAngle; rm.r[3].w = 1.0f; if (bRightSide) m4x4_multiply(&om, mtx, &rm); else m4x4_multiply(&om, &rm, mtx); m4x4_copy(mtx, &om); } void m4x4_rotate_y(matrix_4x4* mtx, float angle, bool bRightSide) { matrix_4x4 rm, om; float cosAngle = cosf(angle); float sinAngle = sinf(angle); m4x4_zeros(&rm); rm.r[0].x = cosAngle; rm.r[0].z = sinAngle; rm.r[1].y = 1.0f; rm.r[2].x = -sinAngle; rm.r[2].z = cosAngle; rm.r[3].w = 1.0f; if (bRightSide) m4x4_multiply(&om, mtx, &rm); else m4x4_multiply(&om, &rm, mtx); m4x4_copy(mtx, &om); } void m4x4_rotate_z(matrix_4x4* mtx, float angle, bool bRightSide) { matrix_4x4 rm, om; float cosAngle = cosf(angle); float sinAngle = sinf(angle); m4x4_zeros(&rm); rm.r[0].x = cosAngle; rm.r[0].y = sinAngle; rm.r[1].x = -sinAngle; rm.r[1].y = cosAngle; rm.r[2].z = 1.0f; rm.r[3].w = 1.0f; if (bRightSide) m4x4_multiply(&om, mtx, &rm); else m4x4_multiply(&om, &rm, mtx); m4x4_copy(mtx, &om); } void m4x4_ortho_tilt(matrix_4x4* mtx, float left, float right, float bottom, float top, float near, float far) { matrix_4x4 mp; m4x4_zeros(&mp); // Build standard orthogonal projection matrix mp.r[0].x = 2.0f / (right - left); mp.r[0].w = (left + right) / (left - right); mp.r[1].y = 2.0f / (top - bottom); mp.r[1].w = (bottom + top) / (bottom - top); mp.r[2].z = 2.0f / (near - far); mp.r[2].w = (far + near) / (far - near); mp.r[3].w = 1.0f; // Fix depth range to [-1, 0] matrix_4x4 mp2, mp3; m4x4_identity(&mp2); mp2.r[2].z = 0.5; mp2.r[2].w = -0.5; m4x4_multiply(&mp3, &mp2, &mp); // Fix the 3DS screens' orientation by swapping the X and Y axis m4x4_identity(&mp2); mp2.r[0].x = 0.0; mp2.r[0].y = 1.0; mp2.r[1].x = -1.0; // flipped mp2.r[1].y = 0.0; m4x4_multiply(mtx, &mp2, &mp3); } void m4x4_persp_tilt(matrix_4x4* mtx, float fovx, float invaspect, float near, float far) { // Notes: // We are passed "fovy" and the "aspect ratio". However, the 3DS screens are sideways, // and so are these parameters -- in fact, they are actually the fovx and the inverse // of the aspect ratio. Therefore the formula for the perspective projection matrix // had to be modified to be expressed in these terms instead. // Notes: // fovx = 2 atan(tan(fovy/2)*w/h) // fovy = 2 atan(tan(fovx/2)*h/w) // invaspect = h/w // a0,0 = h / (w*tan(fovy/2)) = // = h / (w*tan(2 atan(tan(fovx/2)*h/w) / 2)) = // = h / (w*tan( atan(tan(fovx/2)*h/w) )) = // = h / (w * tan(fovx/2)*h/w) = // = 1 / tan(fovx/2) // a1,1 = 1 / tan(fovy/2) = (...) = w / (h*tan(fovx/2)) float fovx_tan = tanf(fovx / 2); matrix_4x4 mp; m4x4_zeros(&mp); // Build standard perspective projection matrix mp.r[0].x = 1.0f / fovx_tan; mp.r[1].y = 1.0f / (fovx_tan*invaspect); mp.r[2].z = (near + far) / (near - far); mp.r[2].w = (2 * near * far) / (near - far); mp.r[3].z = -1.0f; // Fix depth range to [-1, 0] matrix_4x4 mp2; m4x4_identity(&mp2); mp2.r[2].z = 0.5; mp2.r[2].w = -0.5; m4x4_multiply(mtx, &mp2, &mp); // Rotate the matrix one quarter of a turn CCW in order to fix the 3DS screens' orientation m4x4_rotate_z(mtx, M_PI / 2, true); }