libctru/libctru/source/services/gsp.c
fincs 2797540a3d Revise most services to follow these guidelines:
- Each service must have xyzInit/xyzExit (with that name)
- xyzInit/xyzExit use reference counting
- xyzExit returns void
- The utilities in <3ds/result.h> are used instead of manual error checking
- The intrinsics in <3ds/synchronization.h> are used instead of inline asm
- Other miscellaneous changes
  - APT now uses a lightweight lock instead of a mutex
  - Initial handle parameters in PTMU were killed
  - Explicit init'ion to 0 or NULL has been removed for global variables
    since they end up on .bss anyway
  - MIC hasn't been touched because it must be rewritten first
  - CFGNOR needs a slight touch before converting
  - SOC is still to be cleaned up
2015-11-07 01:25:31 +01:00

439 lines
9.5 KiB
C

/*
gsp.c _ Gpu/lcd stuff.
*/
#include <stdlib.h>
#include <string.h>
#include <3ds/types.h>
#include <3ds/result.h>
#include <3ds/svc.h>
#include <3ds/srv.h>
#include <3ds/synchronization.h>
#include <3ds/services/gsp.h>
#define GSP_EVENT_STACK_SIZE 0x1000
Handle gspGpuHandle;
Handle gspLcdHandle;
Handle gspEvents[GSPEVENT_MAX];
vu32 gspEventCounts[GSPEVENT_MAX];
u64 gspEventStack[GSP_EVENT_STACK_SIZE/sizeof(u64)]; //u64 so that it's 8-byte aligned
volatile bool gspRunEvents;
Handle gspEventThread;
static Handle gspEvent;
static int gspRefCount, gspLcdRefCount;
static vu8* gspEventData;
static void gspEventThreadMain(void *arg);
Result gspInit(void)
{
Result res=0;
if (AtomicPostIncrement(&gspRefCount)) return 0;
res = srvGetServiceHandle(&gspGpuHandle, "gsp::Gpu");
if (R_FAILED(res)) AtomicDecrement(&gspRefCount);
return res;
}
void gspExit(void)
{
if (AtomicDecrement(&gspRefCount)) return;
svcCloseHandle(gspGpuHandle);
}
Result gspInitEventHandler(Handle _gspEvent, vu8* _gspSharedMem, u8 gspThreadId)
{
// Create events
int i;
for (i = 0; i < GSPEVENT_MAX; i ++)
{
Result rc = svcCreateEvent(&gspEvents[i], 0);
if (rc != 0)
{
// Destroy already created events due to failure
int j;
for (j = 0; j < i; j ++)
svcCloseHandle(gspEvents[j]);
return rc;
}
}
// Start event thread
gspEvent = _gspEvent;
gspEventData = _gspSharedMem + gspThreadId*0x40;
gspRunEvents = true;
return svcCreateThread(&gspEventThread, gspEventThreadMain, 0x0, (u32*)((char*)gspEventStack + sizeof(gspEventStack)), 0x31, 0xfffffffe);
}
void gspExitEventHandler(void)
{
// Stop event thread
gspRunEvents = false;
svcWaitSynchronization(gspEventThread, 1000000000);
svcCloseHandle(gspEventThread);
// Free events
int i;
for (i = 0; i < GSPEVENT_MAX; i ++)
svcCloseHandle(gspEvents[i]);
}
void gspWaitForEvent(GSP_Event id, bool nextEvent)
{
if(id>=GSPEVENT_MAX)return;
if (nextEvent)
svcClearEvent(gspEvents[id]);
svcWaitSynchronization(gspEvents[id], U64_MAX);
if (!nextEvent)
svcClearEvent(gspEvents[id]);
}
static int popInterrupt()
{
int curEvt;
bool strexFailed;
do {
union {
struct {
u8 cur;
u8 count;
u8 err;
u8 unused;
};
u32 as_u32;
} header;
// Do a load on all header fields as an atomic unit
header.as_u32 = __ldrex((s32*)gspEventData);
if (__builtin_expect(header.count == 0, 0)) {
__clrex();
return -1;
}
curEvt = gspEventData[0xC + header.cur];
header.cur += 1;
if (header.cur >= 0x34) header.cur -= 0x34;
header.count -= 1;
header.err = 0; // Should this really be set?
strexFailed = __strex((s32*)gspEventData, header.as_u32);
} while (__builtin_expect(strexFailed, 0));
return curEvt;
}
void gspEventThreadMain(void *arg)
{
while (gspRunEvents)
{
svcWaitSynchronization(gspEvent, U64_MAX);
svcClearEvent(gspEvent);
while (true)
{
int curEvt = popInterrupt();
if (curEvt == -1)
break;
if (curEvt < GSPEVENT_MAX) {
svcSignalEvent(gspEvents[curEvt]);
gspEventCounts[curEvt]++;
}
}
}
svcExitThread();
}
Result GSPGPU_WriteHWRegs(u32 regAddr, u32* data, u8 size)
{
if(size>0x80 || !data)return -1;
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x00010082; //request header code
cmdbuf[1]=regAddr;
cmdbuf[2]=size;
cmdbuf[3]=(size<<14)|2;
cmdbuf[4]=(u32)data;
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_WriteHWRegsWithMask(u32 regAddr, u32* data, u8 datasize, u32* maskdata, u8 masksize)
{
if(datasize>0x80 || !data)return -1;
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x00020084; //request header code
cmdbuf[1]=regAddr;
cmdbuf[2]=datasize;
cmdbuf[3]=(datasize<<14)|2;
cmdbuf[4]=(u32)data;
cmdbuf[5]=(masksize<<14)|0x402;
cmdbuf[6]=(u32)maskdata;
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_ReadHWRegs(u32 regAddr, u32* data, u8 size)
{
if(size>0x80 || !data)return -1;
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x00040080; //request header code
cmdbuf[1]=regAddr;
cmdbuf[2]=size;
cmdbuf[0x40]=(size<<14)|2;
cmdbuf[0x40+1]=(u32)data;
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_SetBufferSwap(u32 screenid, GSP_FramebufferInfo *framebufinfo)
{
u32 *cmdbuf = getThreadCommandBuffer();
cmdbuf[0] = 0x00050200;
cmdbuf[1] = screenid;
memcpy(&cmdbuf[2], framebufinfo, sizeof(GSP_FramebufferInfo));
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_FlushDataCache(const void* adr, u32 size)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x00080082; //request header code
cmdbuf[1]=(u32)adr;
cmdbuf[2]=size;
cmdbuf[3]=0x0;
cmdbuf[4]=CUR_PROCESS_HANDLE;
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_InvalidateDataCache(const void* adr, u32 size)
{
u32 *cmdbuf = getThreadCommandBuffer();
cmdbuf[0] = 0x00090082;
cmdbuf[1] = (u32)adr;
cmdbuf[2] = size;
cmdbuf[3] = 0;
cmdbuf[4] = CUR_PROCESS_HANDLE;
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_SetLcdForceBlack(u8 flags)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x000B0040; //request header code
cmdbuf[1]=flags;
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_TriggerCmdReqQueue(void)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x000C0000; //request header code
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_RegisterInterruptRelayQueue(Handle eventHandle, u32 flags, Handle* outMemHandle, u8* threadID)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x00130042; //request header code
cmdbuf[1]=flags;
cmdbuf[2]=0x0;
cmdbuf[3]=eventHandle;
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
if(threadID)*threadID=cmdbuf[2];
if(outMemHandle)*outMemHandle=cmdbuf[4];
return cmdbuf[1];
}
Result GSPGPU_UnregisterInterruptRelayQueue(void)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x00140000; //request header code
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_AcquireRight(u8 flags)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x160042; //request header code
cmdbuf[1]=flags;
cmdbuf[2]=0x0;
cmdbuf[3]=CUR_PROCESS_HANDLE;
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_ReleaseRight(void)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x170000; //request header code
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_ImportDisplayCaptureInfo(GSP_CaptureInfo *captureinfo)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x00180000; //request header code
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
ret = cmdbuf[1];
if(R_SUCCEEDED(ret))
memcpy(captureinfo, &cmdbuf[2], 0x20);
return ret;
}
Result GSPGPU_SaveVramSysArea(void)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x00190000; //request header code
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
Result GSPGPU_RestoreVramSysArea(void)
{
u32* cmdbuf=getThreadCommandBuffer();
cmdbuf[0]=0x001A0000; //request header code
Result ret=0;
if(R_FAILED(ret=svcSendSyncRequest(gspGpuHandle)))return ret;
return cmdbuf[1];
}
//essentially : get commandIndex and totalCommands, calculate offset of new command, copy command and update totalCommands
//use LDREX/STREX because this data may also be accessed by the GSP module and we don't want to break stuff
//(mostly, we could overwrite the buffer header with wrong data and make the GSP module reexecute old commands)
Result GSPGPU_SubmitGxCommand(u32* sharedGspCmdBuf, u32 gxCommand[0x8])
{
if(!sharedGspCmdBuf || !gxCommand)return -1;
u32 cmdBufHeader = __ldrex((s32*)sharedGspCmdBuf);
u8 commandIndex=cmdBufHeader&0xFF;
u8 totalCommands=(cmdBufHeader>>8)&0xFF;
if(totalCommands>=15)return -2;
u8 nextCmd=(commandIndex+totalCommands)%15; //there are 15 command slots
u32* dst=&sharedGspCmdBuf[8*(1+nextCmd)];
memcpy(dst, gxCommand, 0x20);
__dsb();
totalCommands++;
cmdBufHeader=((cmdBufHeader)&0xFFFF00FF)|(((u32)totalCommands)<<8);
while(1)
{
if (!__strex((s32*)sharedGspCmdBuf, cmdBufHeader)) break;
cmdBufHeader = __ldrex((s32*)sharedGspCmdBuf);
totalCommands=((cmdBufHeader&0xFF00)>>8)+1;
cmdBufHeader=((cmdBufHeader)&0xFFFF00FF)|((totalCommands<<8)&0xFF00);
}
if(totalCommands==1)return GSPGPU_TriggerCmdReqQueue();
return 0;
}
Result gspLcdInit(void)
{
Result res=0;
if (AtomicPostIncrement(&gspLcdRefCount)) return 0;
res = srvGetServiceHandle(&gspLcdHandle, "gsp::Lcd");
if (R_FAILED(res)) AtomicDecrement(&gspLcdRefCount);
return res;
}
void gspLcdExit(void)
{
if (AtomicDecrement(&gspLcdRefCount)) return;
svcCloseHandle(gspLcdHandle);
}
Result GSPLCD_PowerOffBacklight(GSPLCD_Screens screen)
{
u32 *cmdbuf = getThreadCommandBuffer();
cmdbuf[0] = 0x00120040;
cmdbuf[1] = screen;
Result ret=0;
if (R_FAILED(ret = svcSendSyncRequest(gspLcdHandle)))return ret;
return cmdbuf[1];
}
Result GSPLCD_PowerOnBacklight(GSPLCD_Screens screen)
{
u32 *cmdbuf = getThreadCommandBuffer();
cmdbuf[0] = 0x00110040;
cmdbuf[1] = screen;
Result ret=0;
if (R_FAILED(ret = svcSendSyncRequest(gspLcdHandle)))return ret;
return cmdbuf[1];
}