
This implements the syscalls for `clock_gettime` and `clock_getres`. We support two clocks: CLOCK_REALTIME and CLOCK_MONOTONIC. I've opted to use the existing `osGetTime()` code for the realtime clock, because it's known to work. For CLOCK_MONOTONIC I've used `svcGetSystemTick()` directly, as it has a higher resolution. We can ignore the drift and so on, because it's supposed to be just the number of ticks since last boot.
191 lines
4.4 KiB
C
191 lines
4.4 KiB
C
#include <sys/iosupport.h>
|
|
#include <sys/time.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/reent.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <errno.h>
|
|
|
|
#include <3ds/types.h>
|
|
#include <3ds/svc.h>
|
|
#include <3ds/env.h>
|
|
#include <3ds/os.h>
|
|
#include <3ds/synchronization.h>
|
|
|
|
#include "../internal.h"
|
|
|
|
void __ctru_exit(int rc);
|
|
|
|
extern const u8 __tdata_lma[];
|
|
extern const u8 __tdata_lma_end[];
|
|
extern u8 __tls_start[];
|
|
|
|
struct _reent* __SYSCALL(getreent)()
|
|
{
|
|
ThreadVars* tv = getThreadVars();
|
|
if (tv->magic != THREADVARS_MAGIC)
|
|
{
|
|
svcBreak(USERBREAK_PANIC);
|
|
for (;;);
|
|
}
|
|
return tv->reent;
|
|
}
|
|
|
|
int __SYSCALL(clock_gettime)(clockid_t clock_id, struct timespec *tp) {
|
|
|
|
if (clock_id == CLOCK_REALTIME)
|
|
{
|
|
if (tp != NULL)
|
|
{
|
|
// Retrieve current time, adjusting epoch from 1900 to 1970
|
|
s64 ms_since_epoch = osGetTime() - 2208988800000ULL;
|
|
tp->tv_sec = ms_since_epoch / 1000;
|
|
tp->tv_nsec = (ms_since_epoch % 1000) * 1000000;
|
|
}
|
|
}
|
|
else if (clock_id == CLOCK_MONOTONIC)
|
|
{
|
|
if (tp != NULL)
|
|
{
|
|
// Use the ticks directly, as it offer the highest precision
|
|
u64 ticks_since_boot = svcGetSystemTick();
|
|
|
|
tp->tv_sec = ticks_since_boot / SYSCLOCK_ARM11;
|
|
tp->tv_nsec = ((ticks_since_boot % SYSCLOCK_ARM11) * 1000000000ULL) / SYSCLOCK_ARM11;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __SYSCALL(clock_getres)(clockid_t clock_id, struct timespec *res) {
|
|
if (clock_id == CLOCK_REALTIME)
|
|
{
|
|
if (res != NULL)
|
|
{
|
|
res->tv_sec = 0;
|
|
res->tv_nsec = 1000000;
|
|
}
|
|
}
|
|
else if (clock_id == CLOCK_MONOTONIC)
|
|
{
|
|
if (res != NULL)
|
|
{
|
|
res->tv_sec = 0;
|
|
res->tv_nsec = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
//---------------------------------------------------------------------------------
|
|
int __SYSCALL(gettod_r)(struct _reent *ptr, struct timeval *tp, struct timezone *tz) {
|
|
//---------------------------------------------------------------------------------
|
|
if (tp != NULL) {
|
|
// Retrieve current time, adjusting epoch from 1900 to 1970
|
|
s64 now = osGetTime() - 2208988800000ULL;
|
|
|
|
// Convert to struct timeval
|
|
tp->tv_sec = now / 1000;
|
|
tp->tv_usec = (now % 1000) * 1000;
|
|
}
|
|
|
|
if (tz != NULL) {
|
|
// Provide dummy information, as the 3DS does not have the concept of timezones
|
|
tz->tz_minuteswest = 0;
|
|
tz->tz_dsttime = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __SYSCALL(nanosleep)(const struct timespec *req, struct timespec *rem)
|
|
{
|
|
svcSleepThread(req->tv_sec * 1000000000ull + req->tv_nsec);
|
|
return 0;
|
|
}
|
|
|
|
void __SYSCALL(lock_init) (_LOCK_T *lock)
|
|
{
|
|
LightLock_Init(lock);
|
|
}
|
|
|
|
void __SYSCALL(lock_acquire) (_LOCK_T *lock)
|
|
{
|
|
LightLock_Lock(lock);
|
|
}
|
|
|
|
int __SYSCALL(lock_try_acquire) (_LOCK_T *lock)
|
|
{
|
|
return LightLock_TryLock(lock);
|
|
}
|
|
|
|
void __SYSCALL(lock_release) (_LOCK_T *lock)
|
|
{
|
|
LightLock_Unlock(lock);
|
|
}
|
|
|
|
void __SYSCALL(lock_init_recursive) (_LOCK_RECURSIVE_T *lock)
|
|
{
|
|
RecursiveLock_Init(lock);
|
|
}
|
|
|
|
void __SYSCALL(lock_acquire_recursive) (_LOCK_RECURSIVE_T *lock)
|
|
{
|
|
RecursiveLock_Lock(lock);
|
|
}
|
|
|
|
int __SYSCALL(lock_try_acquire_recursive) (_LOCK_RECURSIVE_T *lock)
|
|
{
|
|
return RecursiveLock_TryLock(lock);
|
|
}
|
|
|
|
void __SYSCALL(lock_release_recursive) (_LOCK_RECURSIVE_T *lock)
|
|
{
|
|
RecursiveLock_Unlock(lock);
|
|
}
|
|
|
|
void __SYSCALL(exit)(int rc) {
|
|
__ctru_exit(rc);
|
|
}
|
|
|
|
void initThreadVars(struct Thread_tag *thread)
|
|
{
|
|
ThreadVars* tv = getThreadVars();
|
|
tv->magic = THREADVARS_MAGIC;
|
|
tv->reent = thread != NULL ? &thread->reent : _impure_ptr;
|
|
tv->thread_ptr = thread;
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Warray-bounds"
|
|
tv->tls_tp = (thread != NULL ? (u8*)thread->stacktop : __tls_start) - 8; // Arm ELF TLS ABI mandates an 8-byte header
|
|
#pragma GCC diagnostic pop
|
|
tv->srv_blocking_policy = false;
|
|
|
|
// Kernel does not initialize fpscr at all, so we must do it ourselves
|
|
// https://developer.arm.com/documentation/ddi0360/f/vfp-programmers-model/vfp11-system-registers/floating-point-status-and-control-register--fpscr
|
|
|
|
// All flags clear, all interrupts disabled, all instruction scalar.
|
|
// As for the 3 below fields: default NaN mode, flush-to-zero both enabled & round to nearest.
|
|
__builtin_arm_set_fpscr(BIT(25) | BIT(24) | (0u << 22));
|
|
}
|
|
|
|
void __system_initSyscalls(void)
|
|
{
|
|
// Initialize thread vars for the main thread
|
|
initThreadVars(NULL);
|
|
u32 tls_size = __tdata_lma_end - __tdata_lma;
|
|
if (tls_size)
|
|
memcpy(__tls_start, __tdata_lma, tls_size);
|
|
}
|