Files
palladium/include/pd/core/vec3.hpp

236 lines
5.0 KiB
C++
Raw Normal View History

#pragma once
/*
MIT License
Copyright (c) 2024 - 2025 René Amthor (tobid7)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
// This file is generated by lazyvec 2.0.0
#include <pd/core/common.hpp>
// Extended includes (rename if you use other filenames/paths)
#include <pd/core/vec2.hpp>
namespace PD {
template <typename T>
class vec3 {
public:
T x;
T y;
T z;
// Constructors
constexpr vec3() : x(0), y(0), z(0) {}
template <typename T1>
constexpr vec3(T1 v) {
x = (T)v;
y = (T)v;
z = (T)v;
}
template <typename T1>
constexpr vec3(const vec3<T1>& v) {
x = (T)v.x;
y = (T)v.y;
z = (T)v.z;
}
constexpr explicit vec3(T x, T y, T z) : x(x), y(y), z(z) {}
// Extended Constructors
template <typename T1>
constexpr explicit vec3(const vec2<T1>& xy, T1 z) {
{
x = (T)xy.x;
y = (T)xy.y;
this->z = (T)z;
}
}
// Operations
template <typename T1>
vec3<T>& operator+=(T1 v) {
x += (T)v;
y += (T)v;
z += (T)v;
return *this;
}
template <typename T1>
vec3<T>& operator+=(const vec3<T1>& v) {
x += (T)v.x;
y += (T)v.y;
z += (T)v.z;
return *this;
}
template <typename T1>
vec3<T> operator+(T1 v) const {
return vec3<T>(x + (T)v, y + (T)v, z + (T)v);
}
template <typename T1>
vec3<T> operator+(const vec3<T1>& v) const {
return vec3<T>(x + (T)v.x, y + (T)v.y, z + (T)v.z);
}
template <typename T1>
vec3<T>& operator-=(T1 v) {
x -= (T)v;
y -= (T)v;
z -= (T)v;
return *this;
}
template <typename T1>
vec3<T>& operator-=(const vec3<T1>& v) {
x -= (T)v.x;
y -= (T)v.y;
z -= (T)v.z;
return *this;
}
template <typename T1>
vec3<T> operator-(T1 v) const {
return vec3<T>(x - (T)v, y - (T)v, z - (T)v);
}
template <typename T1>
vec3<T> operator-(const vec3<T1>& v) const {
return vec3<T>(x - (T)v.x, y - (T)v.y, z - (T)v.z);
}
template <typename T1>
vec3<T>& operator*=(T1 v) {
x *= (T)v;
y *= (T)v;
z *= (T)v;
return *this;
}
template <typename T1>
vec3<T>& operator*=(const vec3<T1>& v) {
x *= (T)v.x;
y *= (T)v.y;
z *= (T)v.z;
return *this;
}
template <typename T1>
vec3<T> operator*(T1 v) const {
return vec3<T>(x * (T)v, y * (T)v, z * (T)v);
}
template <typename T1>
vec3<T> operator*(const vec3<T1>& v) const {
return vec3<T>(x * (T)v.x, y * (T)v.y, z * (T)v.z);
}
template <typename T1>
vec3<T>& operator/=(T1 v) {
x /= (T)v;
y /= (T)v;
z /= (T)v;
return *this;
}
template <typename T1>
vec3<T>& operator/=(const vec3<T1>& v) {
x /= (T)v.x;
y /= (T)v.y;
z /= (T)v.z;
return *this;
}
template <typename T1>
vec3<T> operator/(T1 v) const {
return vec3<T>(x / (T)v, y / (T)v, z / (T)v);
}
template <typename T1>
vec3<T> operator/(const vec3<T1>& v) const {
return vec3<T>(x / (T)v.x, y / (T)v.y, z / (T)v.z);
}
// Generic Operations
vec3 operator-() const { return vec3(-x, -y, -z); }
template <typename T1>
bool operator==(const vec3<T1>& v) const {
return x == (T)v.x && y == (T)v.y && z == (T)v.z;
}
template <typename T1>
bool operator!=(const vec3<T1>& v) const {
return !(*this == v);
}
// Functions
double Len() const { return std::sqrt(SqLen()); }
double SqLen() const { return x * x + y * y + z * z; }
template <typename T1>
double Distance(const vec3<T1>& v) const {
return (*this - v).Len();
}
vec3<T> Normalize() const {
double l = Len();
if (l == 0) {
return *this;
}
return *this / (T)l;
}
template <typename T1>
T Dot(const vec3<T1>& v) const {
return x * (T)v.x + y * (T)v.y + z * (T)v.z;
}
template <typename T1>
vec3<T> Cross(const vec3<T1>& v) const {
return vec3<T>(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
}
// Swap Functions
void SwapXY() {
T t = x;
x = y;
y = t;
}
void SwapXZ() {
T t = x;
x = z;
z = t;
}
void SwapYZ() {
T t = y;
y = z;
z = t;
}
};
using fvec3 = vec3<float>;
using ivec3 = vec3<int>;
using dvec3 = vec3<double>;
} // namespace PD