#pragma once /* MIT License Copyright (c) 2024 - 2025 René Amthor (tobid7) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // This file is generated by lazyvec 2.0.0 #include // Extended includes (rename if you use other filenames/paths) #include namespace PD { template class vec3 { public: T x; T y; T z; // Constructors constexpr vec3() : x(0), y(0), z(0) {} template constexpr vec3(T1 v) { x = (T)v; y = (T)v; z = (T)v; } template constexpr vec3(const vec3& v) { x = (T)v.x; y = (T)v.y; z = (T)v.z; } constexpr explicit vec3(T x, T y, T z) : x(x), y(y), z(z) {} // Extended Constructors template constexpr explicit vec3(const vec2& xy, T1 z) { { x = (T)xy.x; y = (T)xy.y; this->z = (T)z; } } // Operations template vec3& operator+=(T1 v) { x += (T)v; y += (T)v; z += (T)v; return *this; } template vec3& operator+=(const vec3& v) { x += (T)v.x; y += (T)v.y; z += (T)v.z; return *this; } template vec3 operator+(T1 v) const { return vec3(x + (T)v, y + (T)v, z + (T)v); } template vec3 operator+(const vec3& v) const { return vec3(x + (T)v.x, y + (T)v.y, z + (T)v.z); } template vec3& operator-=(T1 v) { x -= (T)v; y -= (T)v; z -= (T)v; return *this; } template vec3& operator-=(const vec3& v) { x -= (T)v.x; y -= (T)v.y; z -= (T)v.z; return *this; } template vec3 operator-(T1 v) const { return vec3(x - (T)v, y - (T)v, z - (T)v); } template vec3 operator-(const vec3& v) const { return vec3(x - (T)v.x, y - (T)v.y, z - (T)v.z); } template vec3& operator*=(T1 v) { x *= (T)v; y *= (T)v; z *= (T)v; return *this; } template vec3& operator*=(const vec3& v) { x *= (T)v.x; y *= (T)v.y; z *= (T)v.z; return *this; } template vec3 operator*(T1 v) const { return vec3(x * (T)v, y * (T)v, z * (T)v); } template vec3 operator*(const vec3& v) const { return vec3(x * (T)v.x, y * (T)v.y, z * (T)v.z); } template vec3& operator/=(T1 v) { x /= (T)v; y /= (T)v; z /= (T)v; return *this; } template vec3& operator/=(const vec3& v) { x /= (T)v.x; y /= (T)v.y; z /= (T)v.z; return *this; } template vec3 operator/(T1 v) const { return vec3(x / (T)v, y / (T)v, z / (T)v); } template vec3 operator/(const vec3& v) const { return vec3(x / (T)v.x, y / (T)v.y, z / (T)v.z); } // Generic Operations vec3 operator-() const { return vec3(-x, -y, -z); } template bool operator==(const vec3& v) const { return x == (T)v.x && y == (T)v.y && z == (T)v.z; } template bool operator!=(const vec3& v) const { return !(*this == v); } // Functions double Len() const { return std::sqrt(SqLen()); } double SqLen() const { return x * x + y * y + z * z; } template double Distance(const vec3& v) const { return (*this - v).Len(); } vec3 Normalize() const { double l = Len(); if (l == 0) { return *this; } return *this / (T)l; } template T Dot(const vec3& v) const { return x * (T)v.x + y * (T)v.y + z * (T)v.z; } template vec3 Cross(const vec3& v) const { return vec3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x); } // Swap Functions void SwapXY() { T t = x; x = y; y = t; } void SwapXZ() { T t = x; x = z; z = t; } void SwapYZ() { T t = y; y = z; z = t; } }; using fvec3 = vec3; using ivec3 = vec3; using dvec3 = vec3; } // namespace PD