Delete external/tween-engine directory

This commit is contained in:
tobid7 2021-07-25 18:35:41 +02:00 committed by GitHub
parent d2145977c5
commit 00ec77e6a3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
84 changed files with 0 additions and 3430 deletions

View File

@ -1,44 +0,0 @@
PROJECT = libtween
CXX = arm-none-eabi-g++
AR = arm-none-eabi-ar
CXXFLAGS = -g -Wall -pedantic -std=c++11 -fno-rtti -fno-exceptions
INCLUDES = -Iinclude/
SOURCES = $(wildcard src/*.cpp) $(wildcard src/*/*.cpp)
OBJECTS = $(SOURCES:src/%.cpp=build/arm/%.o)
TEST_CXX = g++
TEST_AR = ar
TEST_CXXFLAGS = -g -Wall -pedantic -std=c++11 -fno-rtti -fno-exceptions -DTESTING
TEST_OBJECTS = $(SOURCES:src/%.cpp=build/test/%.o)
.PHONY: all dir clean test
all: dir $(PROJECT).a
test: dir $(PROJECT)-test.a
dir:
@mkdir -p build/arm/equations
@mkdir -p build/arm/paths
@mkdir -p build/test/equations
@mkdir -p build/test/paths
@mkdir -p lib
$(PROJECT).a: $(OBJECTS)
$(AR) rvs lib/$@ $^
$(PROJECT)-test.a: $(TEST_OBJECTS)
$(TEST_AR) rvs lib/$@ $^
clean:
@rm -rf build
@rm -rf lib
@echo "Successfully cleaned."
build/arm/%.o: src/%.cpp
$(CXX) $(INCLUDES) $(CXXFLAGS) -c $< -o $@
$(CXX) -MM $< > build/arm/$*.d
build/test/%.o: src/%.cpp
$(TEST_CXX) $(INCLUDES) $(TEST_CXXFLAGS) -c $< -o $@
$(TEST_CXX) -MM $< > build/test/$*.d

View File

@ -1 +0,0 @@
BaseTween.o: src/BaseTween.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
Tween.o: src/Tween.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
TweenEquations.o: src/TweenEquations.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
TweenManager.o: src/TweenManager.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
TweenPaths.o: src/TweenPaths.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
TweenPool.o: src/TweenPool.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
Back.o: src/equations/Back.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
Bounce.o: src/equations/Bounce.cpp

View File

@ -1 +0,0 @@
Circ.o: src/equations/Circ.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
Cubic.o: src/equations/Cubic.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
Elastic.o: src/equations/Elastic.cpp

View File

@ -1 +0,0 @@
Expo.o: src/equations/Expo.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
Linear.o: src/equations/Linear.cpp

View File

@ -1 +0,0 @@
Quad.o: src/equations/Quad.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
Quart.o: src/equations/Quart.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
Quint.o: src/equations/Quint.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
Sine.o: src/equations/Sine.cpp

Binary file not shown.

View File

@ -1 +0,0 @@
CatmullRom.o: src/paths/CatmullRom.cpp

View File

@ -1 +0,0 @@
LinearPath.o: src/paths/LinearPath.cpp

View File

@ -1,172 +0,0 @@
//
// BaseTween.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* BaseTween is the base class of Tween and Timeline. It defines the
* iteration engine used to play animations for any number of times, and in
* any direction, at any speed.
* <p/>
*
* It is responsible for calling the different callbacks at the right moments,
* and for making sure that every callbacks are triggered, even if the update
* engine gets a big delta time at once.
*
* @see Tween
* @see Timeline
* @author Aurelien Ribon | http://www.aurelienribon.com/
*/
#ifndef __BaseTween__
#define __BaseTween__
#include <functional>
#include <map>
#include <TweenEngine/TweenCallback.h>
namespace TweenEngine
{
class TweenManager;
typedef std::function<void(BaseTween* source)> TweenCallbackFunction;
class BaseTween
{
private:
// General
int step;
int repeatCnt;
bool isIterationStep;
bool isYoyoFlag;
// Timings
float repeatDelay;
float currentTime;
float deltaTime;
bool isStartedFlag; // true when the object is started
bool isInitializedFlag; // true after the delay
bool isFinishedFlag; // true when all repetitions are done
bool isKilledFlag; // true if kill() was called
bool isPausedFlag; // true if pause() was called
// Misc
TweenCallback *callback;
int callbackTriggers;
void *userData;
std::map<int, TweenCallbackFunction> callbacks;
// Update
void initialize();
void testRelaunch();
void updateStep();
void testCompletion();
protected:
// Timings
float delayStart;
float duration;
virtual void reset();
virtual void forceStartValues() = 0;
virtual void forceEndValues() = 0;
virtual void initializeOverride();
virtual void updateOverride(int step, int lastStep, bool isIterationStep, float delta);
virtual void forceToStart();
virtual void forceToEnd(float time);
void callCallback(int type);
bool isReverse(int step);
bool isValid(int step);
public:
virtual ~BaseTween() {}
virtual int getTweenCount() = 0;
virtual int getTimelineCount() = 0;
// Package access
bool isAutoRemoveEnabled;
bool isAutoStartEnabled;
virtual BaseTween &build();
BaseTween &start();
BaseTween &start(TweenManager &manager);
BaseTween &delay(float delay);
void kill();
virtual void free();
void pause();
void resume();
BaseTween &repeat(int count, float delay);
BaseTween &repeatYoyo(int count, float delay);
BaseTween &setCallback(TweenCallback *callback);
BaseTween &setCallback(int type, const TweenCallbackFunction& callback);
BaseTween &setCallbackTriggers(int flags);
BaseTween &setUserData(void *data);
// Getters
float getDelay();
float getDuration();
int getRepeatCount();
float getRepeatDelay();
float getFullDuration();
void *getUserData();
int getStep();
float getCurrentTime();
bool isStarted();
bool isInitialized();
bool isFinished();
bool isYoyo();
bool isPaused();
// Update
void update(float delta);
};
}
#endif /* defined(__BaseTween__) */

View File

@ -1,100 +0,0 @@
//
// Pool.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* A light pool of objects that can be resused to avoid allocation.
* Based on Nathan Sweet pool implementation
*/
#ifndef __Pool__
#define __Pool__
#include <vector>
#include <algorithm>
namespace TweenEngine
{
template<typename T>
class PoolCallback
{
public:
virtual void onPool(T *obj) = 0;
virtual void onUnPool(T *obj) = 0;
};
template<typename T>
class Pool
{
private:
std::vector<T *> objects;
PoolCallback<T> *callback;
protected:
virtual ~Pool() {}
virtual T *create()=0;
public:
Pool(int initCapacity, PoolCallback<T> *callback);
T *get();
void free(T *obj);
void clear();
int size();
void ensureCapacity(int minCapacity);
};
// Implementation
template <typename T>
Pool<T>::Pool(int initCapacity, PoolCallback<T> *cb) : objects(initCapacity), callback(cb)
{
}
template <typename T>
T *Pool<T>::get()
{
T *obj = nullptr;
if (objects.empty())
{
obj = create();
}
else
{
obj = objects.back();
objects.pop_back();
if (obj == nullptr) obj = create();
}
if (callback != nullptr) callback->onUnPool(obj);
return obj;
}
template <typename T>
void Pool<T>::free(T *obj)
{
if (obj == nullptr) return;
bool contains = (std::find(objects.begin(), objects.end(), obj) != objects.end());
if (!contains)
{
if (callback != nullptr) callback->onPool(obj);
objects.push_back(obj);
}
}
template <typename T>
void Pool<T>::clear() { objects.clear(); }
template <typename T>
int Pool<T>::size() { return objects.size(); }
template <typename T>
void Pool<T>::ensureCapacity(int minCapacity) { objects.reserve(minCapacity); }
}
#endif /* defined(__Pool__) */

View File

@ -1,116 +0,0 @@
//
// Tween.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Tween__
#define __Tween__
#include <TweenEngine/Tweenable.h>
#include <TweenEngine/BaseTween.h>
#include <TweenEngine/Pool.h>
#include <TweenEngine/TweenEquation.h>
#include <TweenEngine/TweenPath.h>
#include <TweenEngine/TweenEquations.h>
#include <TweenEngine/TweenPaths.h>
namespace TweenEngine
{
class TweenPool;
class TweenPoolCallback;
class Tween : public BaseTween
{
friend class TweenPoolCallback;
private:
static int combinedAttrsLimit;
static int waypointsLimit;
// Main
Tweenable *targetObj;
int type;
TweenEquation *equation;
TweenPath *pathAlgorithm;
// General
bool isFrom;
bool isRelative;
int combinedAttrsCnt;
int waypointsCnt;
// Values
float* startValues;
float* targetValues;
float* waypoints;
// Buffers
float *accessorBuffer;
int accessorBufferSize;
float *pathBuffer;
int pathBufferSize;
//static TweenPoolCallback *poolCallback;
static TweenPool &pool;
void setup(Tweenable *target, int tweenType, float duration);
protected:
virtual void reset();
virtual void forceStartValues();
virtual void forceEndValues();
virtual void initializeOverride();
virtual void updateOverride(int step, int lastStep, bool isIterationStep, float delta);
public:
static const int ACCESSOR_READ = 0;
static const int ACCESSOR_WRITE = 1;
static void setCombinedAttributesLimit(int limit);
static void setWaypointsLimit(int limit);
static const char *getVersion();
static int getPoolSize();
static void ensurePoolCapacity(int minCapacity);
static Tween &to(Tweenable& target, int tweenType, float duration);
static Tween &from(Tweenable& target, int tweenType, float duration);
static Tween &set(Tweenable& target, int tweenType);
static Tween &call(TweenCallback &callback);
static Tween &mark();
Tween();
~Tween();
virtual int getTweenCount();
virtual int getTimelineCount();
virtual Tween &build();
virtual void free();
Tween &ease(TweenEquation &easeEquation);
Tween &target(float targetValue);
Tween &target(float targetValue1, float targetValue2);
Tween &target(float targetValue1, float targetValue2, float targetValue3);
Tween &target(float *targetValues, int len);
Tween &targetRelative(float targetValue);
Tween &targetRelative(float targetValue1, float targetValue2);
Tween &targetRelative(float targetValue1, float targetValue2, float targetValue3);
Tween &targetRelative(float *targetValues, int len);
Tween &waypoint(float targetValue);
Tween &waypoint(float targetValue1, float targetValue2);
Tween &waypoint(float targetValue1, float targetValue2, float targetValue3);
Tween &waypoint(float *targetValues, int len);
Tween &path(TweenPath &path);
int getType();
TweenEquation *getEasing();
float *getTargetValues();
int getCombinedAttributesCount();
};
}
#endif /* defined(__Tween__) */

View File

@ -1,103 +0,0 @@
//
// TweenAccessor.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* The TweenAccessor interface lets you interpolate any attribute from any
* object. Just implement it as you want and register it to the engine by
* calling {@link Tween#registerAccessor}.
* <p/>
*
* <h2>Example</h2>
*
* The following code snippet presents an example of implementation for tweening
* a Particle class. This Particle class is supposed to only define a position
* with an "x" and an "y" fields, and their associated getters and setters.
* <p/>
*
* <pre> {@code
* public class ParticleAccessor implements TweenAccessor<Particle> {
* public static final int X = 1;
* public static final int Y = 2;
* public static final int XY = 3;
*
* public int getValues(Particle target, int tweenType, float[] returnValues) {
* switch (tweenType) {
* case X: returnValues[0] = target.getX(); return 1;
* case Y: returnValues[0] = target.getY(); return 1;
* case XY:
* returnValues[0] = target.getX();
* returnValues[1] = target.getY();
* return 2;
* default: assert false; return 0;
* }
* }
*
* public void setValues(Particle target, int tweenType, float[] newValues) {
* switch (tweenType) {
* case X: target.setX(newValues[0]); break;
* case Y: target.setY(newValues[1]); break;
* case XY:
* target.setX(newValues[0]);
* target.setY(newValues[1]);
* break;
* default: assert false; break;
* }
* }
* }
* }</pre>
*
* Once done, you only need to register this TweenAccessor once to be able to
* use it for every Particle objects in your application:
* <p/>
*
* <pre> {@code
* Tween.registerAccessor(Particle.class, new ParticleAccessor());
* }</pre>
*
* And that's all, the Tween Engine can no work with all your particles!
*
* @author Aurelien Ribon | http://www.aurelienribon.com/
*/
#ifndef __TweenAccessor__
#define __TweenAccessor__
namespace TweenEngine
{
template<class T>
class TweenAccessor
{
public:
virtual ~TweenAccessor() {}
/**
* Gets one or many values from the target object associated to the
* given tween type. It is used by the Tween Engine to determine starting
* values.
*
* @param target The target object of the tween.
* @param tweenType An integer representing the tween type.
* @param returnValues An array which should be modified by this method.
* @return The count of modified slots from the returnValues array.
*/
virtual int getValues(T& target, int tweenType, float *returnValues) = 0;
/**
* This method is called by the Tween Engine each time a running tween
* associated with the current target object has been updated.
*
* @param target The target object of the tween.
* @param tweenType An integer representing the tween type.
* @param newValues The new values determined by the Tween Engine.
*/
virtual void setValues(T& target, int tweenType, float *newValues) = 0;
};
}
#endif /* defined(__TweenAccessor__) */

View File

@ -1,65 +0,0 @@
//
// TweenCallback.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* TweenCallbacks are used to trigger actions at some specific times. They are
* used in both Tweens and Timelines. The moment when the callback is
* triggered depends on its registered triggers:
* <p/>
*
* <b>BEGIN</b>: right after the delay (if any)<br/>
* <b>START</b>: at each iteration beginning<br/>
* <b>END</b>: at each iteration ending, before the repeat delay<br/>
* <b>COMPLETE</b>: at last END event<br/>
* <b>BACK_BEGIN</b>: at the beginning of the first backward iteration<br/>
* <b>BACK_START</b>: at each backward iteration beginning, after the repeat delay<br/>
* <b>BACK_END</b>: at each backward iteration ending<br/>
* <b>BACK_COMPLETE</b>: at last BACK_END event
* <p/>
*
* <pre> {@code
* forward : BEGIN COMPLETE
* forward : START END START END START END
* |--------------[XXXXXXXXXX]------[XXXXXXXXXX]------[XXXXXXXXXX]
* backward: bEND bSTART bEND bSTART bEND bSTART
* backward: bCOMPLETE bBEGIN
* }</pre>
*
* @see Tween
* @see Timeline
* @author Aurelien Ribon | http://www.aurelienribon.com/
*/
#ifndef __TweenCallback__
#define __TweenCallback__
namespace TweenEngine
{
class BaseTween;
class TweenCallback
{
public:
static const int BEGIN = 0x01;
static const int START = 0x02;
static const int END = 0x04;
static const int COMPLETE = 0x08;
static const int BACK_BEGIN = 0x10;
static const int BACK_START = 0x20;
static const int BACK_END = 0x40;
static const int BACK_COMPLETE = 0x80;
static const int ANY_FORWARD = 0x0F;
static const int ANY_BACKWARD = 0xF0;
static const int ANY = 0xFF;
virtual ~TweenCallback() {}
virtual void onEvent(int type, BaseTween *source) = 0;
};
}
#endif /* defined(__TweenCallback__) */

View File

@ -1,46 +0,0 @@
//
// TweenEquation.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* Base class for every easing equation. You can create your own equations
* and directly use them in the Tween engine by inheriting from this class.
*
* @see Tween
* @author Aurelien Ribon | http://www.aurelienribon.com/
*/
#ifndef __TweenEquation__
#define __TweenEquation__
//#include <string.h>
namespace TweenEngine
{
class TweenEquation
{
public:
/**
* Computes the next value of the interpolation.
*
* @param t The current time, between 0 and 1.
* @return The current value.
*/
virtual float compute(float t) = 0;
virtual const char *toString() = 0;
/**
* Returns true if the given string is the name of this equation (the name
* is returned in the toString() method, don't forget to override it).
* This method is usually used to save/load a tween to/from a text file.
*/
//bool isValueOf(const char *str) { return !strcmp(str, toString()); };
};
}
#endif /* defined(__TweenEquation__) */

View File

@ -1,63 +0,0 @@
//
// TweenEquations.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __TweenEquations__
#define __TweenEquations__
#include <TweenEngine/equations/Quad.h>
#include <TweenEngine/equations/Linear.h>
#include <TweenEngine/equations/Back.h>
#include <TweenEngine/equations/Bounce.h>
#include <TweenEngine/equations/Circ.h>
#include <TweenEngine/equations/Cubic.h>
#include <TweenEngine/equations/Elastic.h>
#include <TweenEngine/equations/Expo.h>
#include <TweenEngine/equations/Quart.h>
#include <TweenEngine/equations/Quint.h>
#include <TweenEngine/equations/Sine.h>
namespace TweenEngine
{
class TweenEquations
{
public:
static TweenEquation &easeInQuad;
static TweenEquation &easeOutQuad;
static TweenEquation &easeInOutQuad;
static TweenEquation &easeInOutLinear;
static TweenEquation &easeInBack;
static TweenEquation &easeOutBack;
static TweenEquation &easeInOutBack;
static TweenEquation &easeInBounce;
static TweenEquation &easeOutBounce;
static TweenEquation &easeInOutBounce;
static TweenEquation &easeInCirc;
static TweenEquation &easeOutCirc;
static TweenEquation &easeInOutCirc;
static TweenEquation &easeInCubic;
static TweenEquation &easeOutCubic;
static TweenEquation &easeInOutCubic;
static TweenEquation &easeInElastic;
static TweenEquation &easeOutElastic;
static TweenEquation &easeInOutElastic;
static TweenEquation &easeInExpo;
static TweenEquation &easeOutExpo;
static TweenEquation &easeInOutExpo;
static TweenEquation &easeInQuart;
static TweenEquation &easeOutQuart;
static TweenEquation &easeInOutQuart;
static TweenEquation &easeInQuint;
static TweenEquation &easeOutQuint;
static TweenEquation &easeInOutQuint;
static TweenEquation &easeInSine;
static TweenEquation &easeOutSine;
static TweenEquation &easeInOutSine;
};
}
#endif /* defined(__TweenEquations__) */

View File

@ -1,61 +0,0 @@
//
// TweenManager.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* A TweenManager updates all your tweens and timelines at once.
* Its main interest is that it handles the tween/timeline life-cycles for you,
* as well as the pooling constraints (if object pooling is enabled).
* <p/>
*
* Just give it a bunch of tweens or timelines and call update() periodically,
* you don't need to care for anything else! Relax and enjoy your animations.
*
* @see Tween
* @see Timeline
* @author Aurelien Ribon | http://www.aurelienribon.com/
*/
#ifndef __TweenManager__
#define __TweenManager__
#include <algorithm>
#include <vector>
#include <TweenEngine/BaseTween.h>
namespace TweenEngine
{
class TweenManager
{
private:
std::vector<BaseTween *>objects;
bool isPaused = false;
public:
TweenManager();
static void setAutoRemove(BaseTween &object, bool value);
static void setAutoStart(BaseTween &object, bool value);
TweenManager &add(BaseTween &object);
void killAll();
void ensureCapacity(int minCapacity);
void pause();
void resume();
void update(float delta);
int size();
// Debug Helpers
int getRunningTweensCount();
int getRunningTimelinesCount();
std::vector<BaseTween *> &getObjects();
};
}
#endif /* defined(__TweenManager__) */

View File

@ -1,37 +0,0 @@
//
// TweenPath.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* Base class for every paths. You can create your own paths and directly use
* them in the Tween engine by inheriting from this class.
*
* @author Aurelien Ribon | http://www.aurelienribon.com/
*/
#ifndef __TweenPath__
#define __TweenPath__
namespace TweenEngine
{
class TweenPath
{
public:
/**
* Computes the next value of the interpolation, based on its waypoints and
* the current progress.
*
* @param t The progress of the interpolation, between 0 and 1. May be out
* of these bounds if the easing equation involves some kind of rebounds.
* @param points The waypoints of the tween, from start to target values.
* @param pointsCnt The number of valid points in the array.
* @return The next value of the interpolation.
*/
virtual float compute(float t, float *points, int pointsCnt) = 0;
};
}
#endif /* defined(__TweenPath__) */

View File

@ -1,23 +0,0 @@
//
// TweenPaths.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __TweenPaths__
#define __TweenPaths__
#include <TweenEngine/TweenPath.h>
namespace TweenEngine
{
class TweenPaths
{
public:
static TweenPath &linear;
static TweenPath &catmullRom;
};
}
#endif /* defined(__TweenPaths__) */

View File

@ -1,32 +0,0 @@
//
// TweenPool.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __TweenPool__
#define __TweenPool__
#include <TweenEngine/Pool.h>
#include <TweenEngine/Tween.h>
namespace TweenEngine
{
class TweenPoolCallback : public PoolCallback<Tween>
{
public:
void onPool(Tween *obj);
void onUnPool(Tween *obj);
};
class TweenPool : public Pool<Tween>
{
protected:
Tween *create();
public:
TweenPool();
};
}
#endif /* defined(__TweenPool__) */

View File

@ -1,12 +0,0 @@
#ifndef __Tweenable__
#define __Tweenable__
namespace TweenEngine {
class Tweenable {
public:
virtual int getValues(int tweenType, float *returnValues) = 0;
virtual void setValues(int tweenType, float *newValues) = 0;
};
}
#endif

View File

@ -1,37 +0,0 @@
//
// Back.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Back__
#define __Back__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class BackIn : public TweenEquation
{
~BackIn();
float compute(float t);
const char *toString();
};
class BackOut : public TweenEquation
{
~BackOut();
float compute(float t);
const char *toString();
};
class BackInOut : public TweenEquation
{
~BackInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Back__) */

View File

@ -1,38 +0,0 @@
//
// Bounce.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Bounce__
#define __Bounce__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class BounceIn : public TweenEquation
{
~BounceIn();
float compute(float t);
const char *toString();
};
class BounceOut : public TweenEquation
{
~BounceOut();
float compute(float t);
const char *toString();
};
class BounceInOut : public TweenEquation
{
~BounceInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Bounce__) */

View File

@ -1,37 +0,0 @@
//
// Circ.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Circ__
#define __Circ__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class CircIn : public TweenEquation
{
~CircIn();
float compute(float t);
const char *toString();
};
class CircOut : public TweenEquation
{
~CircOut();
float compute(float t);
const char *toString();
};
class CircInOut : public TweenEquation
{
~CircInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Circ__) */

View File

@ -1,37 +0,0 @@
//
// Cubic.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Cubic__
#define __Cubic__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class CubicIn : public TweenEquation
{
~CubicIn();
float compute(float t);
const char *toString();
};
class CubicOut : public TweenEquation
{
~CubicOut();
float compute(float t);
const char *toString();
};
class CubicInOut : public TweenEquation
{
~CubicInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Cubic__) */

View File

@ -1,61 +0,0 @@
//
// Elastic.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Elastic__
#define __Elastic__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class ElasticIn : public TweenEquation
{
private:
float amplitude;
float period;
bool isAmplitudeSet;
bool isPeriodSet;
public:
~ElasticIn();
float compute(float t);
const char *toString();
void setAmplitude(float a);
void setPeriod(float p);
};
class ElasticOut : public TweenEquation
{
private:
float amplitude;
float period;
bool isAmplitudeSet;
bool isPeriodSet;
public:
~ElasticOut();
float compute(float t);
const char *toString();
void setAmplitude(float a);
void setPeriod(float p);
};
class ElasticInOut : public TweenEquation
{
private:
float amplitude;
float period;
bool isAmplitudeSet;
bool isPeriodSet;
public:
~ElasticInOut();
float compute(float t);
const char *toString();
void setAmplitude(float a);
void setPeriod(float p);
};
}
#endif /* defined(__Elastic__) */

View File

@ -1,37 +0,0 @@
//
// Expo.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Expo__
#define __Expo__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class ExpoIn : public TweenEquation
{
~ExpoIn();
float compute(float t);
const char *toString();
};
class ExpoOut : public TweenEquation
{
~ExpoOut();
float compute(float t);
const char *toString();
};
class ExpoInOut : public TweenEquation
{
~ExpoInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Expo__) */

View File

@ -1,24 +0,0 @@
//
// Linear.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Linear__
#define __Linear__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class LinearInOut : public TweenEquation
{
~LinearInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Linear__) */

View File

@ -1,37 +0,0 @@
//
// Quad.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Quad__
#define __Quad__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class QuadIn : public TweenEquation
{
~QuadIn();
float compute(float t);
const char *toString();
};
class QuadOut : public TweenEquation
{
~QuadOut();
float compute(float t);
const char *toString();
};
class QuadInOut : public TweenEquation
{
~QuadInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Quad__) */

View File

@ -1,37 +0,0 @@
//
// Quart.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Quart__
#define __Quart__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class QuartIn : public TweenEquation
{
~QuartIn();
float compute(float t);
const char *toString();
};
class QuartOut : public TweenEquation
{
~QuartOut();
float compute(float t);
const char *toString();
};
class QuartInOut : public TweenEquation
{
~QuartInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Quart__) */

View File

@ -1,37 +0,0 @@
//
// Quint.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Quint__
#define __Quint__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class QuintIn : public TweenEquation
{
~QuintIn();
float compute(float t);
const char *toString();
};
class QuintOut : public TweenEquation
{
~QuintOut();
float compute(float t);
const char *toString();
};
class QuintInOut : public TweenEquation
{
~QuintInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Quint__) */

View File

@ -1,37 +0,0 @@
//
// Sine.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __Sine__
#define __Sine__
#include <TweenEngine/TweenEquation.h>
namespace TweenEngine
{
class SineIn : public TweenEquation
{
~SineIn();
float compute(float t);
const char *toString();
};
class SineOut : public TweenEquation
{
~SineOut();
float compute(float t);
const char *toString();
};
class SineInOut : public TweenEquation
{
~SineInOut();
float compute(float t);
const char *toString();
};
}
#endif /* defined(__Sine__) */

View File

@ -1,22 +0,0 @@
//
// CatmullRom.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __CatmullRom__
#define __CatmullRom__
#include <TweenEngine/TweenPath.h>
namespace TweenEngine
{
class CatmullRom : public TweenPath
{
float compute(float t, float *points, int pointsCnt);
float catmullRomSpline(float a, float b, float c, float d, float t);
};
}
#endif /* defined(__CatmullRom__) */

View File

@ -1,21 +0,0 @@
//
// Linear.h
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#ifndef __LinearPath__
#define __LinearPath__
#include <TweenEngine/TweenPath.h>
namespace TweenEngine
{
class LinearPath : public TweenPath
{
float compute(float t, float *points, int pointsCnt);
};
}
#endif /* defined(__LinearPath__) */

Binary file not shown.

View File

@ -1,525 +0,0 @@
//
// BaseTween.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
//#define NDEBUG
#include <TweenEngine/BaseTween.h>
#include <TweenEngine/TweenManager.h>
namespace TweenEngine
{
void BaseTween::reset()
{
step = -2;
repeatCnt = 0;
isIterationStep = isYoyoFlag = false;
delayStart = duration = repeatDelay = currentTime = deltaTime = 0;
isStartedFlag = isInitializedFlag = isFinishedFlag = isKilledFlag = isPausedFlag = false;
callback = nullptr;
callbackTriggers = TweenCallback::COMPLETE;
userData = nullptr;
callbacks.clear();
isAutoRemoveEnabled = isAutoStartEnabled = true;
}
// API
/**
* Builds and validates the object. Only needed if you want to finalize a
* tween or timeline without starting it, since a call to ".start()" also
* calls this method.
*
* @return The current object, for chaining instructions.
*/
BaseTween &BaseTween::build()
{
return *this;
}
/**
* Starts or restarts the object unmanaged. You will need to take care of
* its life-cycle. If you want the tween to be managed for you, use a
* {@link TweenManager}.
*
* @return The current object, for chaining instructions.
*/
BaseTween &BaseTween::start()
{
build();
currentTime = 0;
isStartedFlag = true;
return *this;
}
/**
* Convenience method to add an object to a manager. Its life-cycle will be
* handled for you. Relax and enjoy the animation.
*
* @return The current object, for chaining instructions.
*/
BaseTween &BaseTween::start(TweenManager &manager) {
manager.add(*this);
return *this;
}
/**
* Adds a delay to the tween or timeline.
*
* @param delay A duration.
* @return The current object, for chaining instructions.
*/
BaseTween &BaseTween::delay(float delay)
{
this->delayStart += delay;
return *this;
}
/**
* Kills the tween or timeline. If you are using a TweenManager, this object
* will be removed automatically.
*/
void BaseTween::kill()
{
isKilledFlag = true;
}
/**
* Stops and resets the tween or timeline, and sends it to its pool, for
+ * later reuse. Note that if you use a {@link TweenManager}, this method
+ * is automatically called once the animation is finished.
*/
void BaseTween::free()
{
}
/**
* Pauses the tween or timeline. Further update calls won't have any effect.
*/
void BaseTween::pause()
{
isPausedFlag = true;
}
/**
* Resumes the tween or timeline. Has no effect is it was no already paused.
*/
void BaseTween::resume()
{
isPausedFlag = false;
}
/**
* Repeats the tween or timeline for a given number of times.
* @param count The number of repetitions. For infinite repetition,
* use Tween.INFINITY, or a negative number.
*
* @param delay A delay between each iteration.
* @return The current tween or timeline, for chaining instructions.
*/
BaseTween &BaseTween::repeat(int count, float delay)
{
if (isStartedFlag)
{
//throw new RuntimeException("You can't change the repetitions of a tween or timeline once it is started");
}
else
{
repeatCnt = count;
repeatDelay = delay >= 0 ? delay : 0;
isYoyoFlag = false;
}
return *this;
}
/**
* Repeats the tween or timeline for a given number of times.
* Every two iterations, it will be played backwards.
*
* @param count The number of repetitions. For infinite repetition,
* use Tween.INFINITY, or '-1'.
* @param delay A delay before each repetition.
* @return The current tween or timeline, for chaining instructions.
*/
BaseTween &BaseTween::repeatYoyo(int count, float delay)
{
if (isStartedFlag)
{
//throw new RuntimeException("You can't change the repetitions of a tween or timeline once it is started");
}
else
{
repeatCnt = count;
repeatDelay = delay >= 0 ? delay : 0;
isYoyoFlag = true;
}
return *this;
}
/**
* Sets the callback. By default, it will be fired at the completion of the
* tween or timeline (event COMPLETE). If you want to change this behavior
* and add more triggers, use the {@link setCallbackTriggers()} method.
*
* @see TweenCallback
*/
BaseTween &BaseTween::setCallback(TweenCallback *callback)
{
this->callback = callback;
return *this;
}
BaseTween &BaseTween::setCallback(int type, const TweenCallbackFunction& callback)
{
callbacks[type] = callback;
return *this;
}
/**
* Changes the triggers of the callback. The available triggers, listed as
* members of the {@link TweenCallback} interface, are:
* <p/>
*
* <b>BEGIN</b>: right after the delay (if any)<br/>
* <b>START</b>: at each iteration beginning<br/>
* <b>END</b>: at each iteration ending, before the repeat delay<br/>
* <b>COMPLETE</b>: at last END event<br/>
* <b>BACK_BEGIN</b>: at the beginning of the first backward iteration<br/>
* <b>BACK_START</b>: at each backward iteration beginning, after the repeat delay<br/>
* <b>BACK_END</b>: at each backward iteration ending<br/>
* <b>BACK_COMPLETE</b>: at last BACK_END event
* <p/>
*
* <pre> {@code
* forward : BEGIN COMPLETE
* forward : START END START END START END
* |--------------[XXXXXXXXXX]------[XXXXXXXXXX]------[XXXXXXXXXX]
* backward: bEND bSTART bEND bSTART bEND bSTART
* backward: bCOMPLETE bBEGIN
* }</pre>
*
* @param flags one or more triggers, separated by the '|' operator.
* @see TweenCallback
*/
BaseTween &BaseTween::setCallbackTriggers(int flags)
{
this->callbackTriggers = flags;
return *this;
}
/**
* Attaches an object to this tween or timeline. It can be useful in order
* to retrieve some data from a TweenCallback.
*
* @param data Any kind of object.
* @return The current tween or timeline, for chaining instructions.
*/
BaseTween &BaseTween::setUserData(void *data)
{
userData = data;
return *this;
}
// -------------------------------------------------------------------------
// Getters
// -------------------------------------------------------------------------
/**
* Gets the delay of the tween or timeline. Nothing will happen before
* this delay.
*/
float BaseTween::getDelay() { return delayStart; }
/**
* Gets the duration of a single iteration.
*/
float BaseTween::getDuration() { return duration; }
/**
* Gets the number of iterations that will be played.
*/
int BaseTween::getRepeatCount() { return repeatCnt; }
/**
* Gets the delay occuring between two iterations.
*/
float BaseTween::getRepeatDelay() { return repeatDelay; }
/**
* Returns the complete duration, including initial delay and repetitions.
* The formula is as follows:
* <pre>
* fullDuration = delay + duration + (repeatDelay + duration) * repeatCnt
* </pre>
*/
float BaseTween::getFullDuration()
{
if (repeatCnt < 0) return -1;
return delayStart + duration + (repeatDelay + duration) * repeatCnt;
}
/**
* Gets the attached data, or null if none.
*/
void *BaseTween::getUserData() { return userData; }
/**
* Gets the id of the current step. Values are as follows:<br/>
* <ul>
* <li>even numbers mean that an iteration is playing,<br/>
* <li>odd numbers mean that we are between two iterations,<br/>
* <li>-2 means that the initial delay has not ended,<br/>
* <li>-1 means that we are before the first iteration,<br/>
* <li>repeatCount*2 + 1 means that we are after the last iteration
*/
int BaseTween::getStep() { return step; }
/**
* Gets the local time.
*/
float BaseTween::getCurrentTime() { return currentTime; }
/**
* Returns true if the tween or timeline has been started.
*/
bool BaseTween::isStarted() { return isStartedFlag; }
/**
* Returns true if the tween or timeline has been initialized. Starting
* values for tweens are stored at initialization time. This initialization
* takes place right after the initial delay, if any.
*/
bool BaseTween::isInitialized() { return isInitializedFlag; }
/**
* Returns true if the tween is finished (i.e. if the tween has reached
* its end or has been killed). If you don't use a TweenManager, you may
* want to call {@link free()} to reuse the object later.
*/
bool BaseTween::isFinished() { return isFinishedFlag || isKilledFlag; }
/**
* Returns true if the iterations are played as yoyo. Yoyo means that
* every two iterations, the animation will be played backwards.
*/
bool BaseTween::isYoyo() { return isYoyoFlag; }
/**
* Returns true if the tween or timeline is currently paused.
*/
bool BaseTween::isPaused() { return isPausedFlag; }
void BaseTween::initializeOverride() {}
void BaseTween::updateOverride(int step, int lastStep, bool isIterationStep, float delta) {}
void BaseTween::forceToStart()
{
currentTime = -delayStart;
step = -1;
isIterationStep = false;
if (isReverse(0)) forceEndValues();
else forceStartValues();
}
void BaseTween::forceToEnd(float time)
{
currentTime = time - getFullDuration();
step = repeatCnt*2 + 1;
isIterationStep = false;
if (isReverse(repeatCnt*2)) forceStartValues();
else forceEndValues();
}
void BaseTween::callCallback(int type)
{
auto callback = callbacks.find(type);
if (callback != callbacks.end()) {
callback->second(this);
}
// if (callback != nullptr && (callbackTriggers & type) > 0) callback->onEvent(type, this);
}
bool BaseTween::isReverse(int step)
{
return isYoyoFlag && abs(step%4) == 2;
}
bool BaseTween::isValid(int step)
{
return (step >= 0 && step <= repeatCnt*2) || repeatCnt < 0;
}
// -------------------------------------------------------------------------
// Update engine
// -------------------------------------------------------------------------
/**
* Updates the tween or timeline state. <b>You may want to use a
* TweenManager to update objects for you.</b>
*
* Slow motion, fast motion and backward play can be easily achieved by
* tweaking this delta time. Multiply it by -1 to play the animation
* backward, or by 0.5 to play it twice slower than its normal speed.
*
* @param delta A delta time between now and the last call.
*/
void BaseTween::update(float delta)
{
if (!isStartedFlag || isPausedFlag || isKilledFlag) return;
deltaTime = delta;
if (!isInitializedFlag) initialize();
if (isInitializedFlag)
{
testRelaunch();
updateStep();
testCompletion();
}
currentTime += deltaTime;
deltaTime = 0;
}
void BaseTween::initialize() {
if (currentTime+deltaTime >= delayStart)
{
initializeOverride();
isInitializedFlag = true;
isIterationStep = true;
step = 0;
deltaTime -= delayStart-currentTime;
currentTime = 0;
callCallback(TweenCallback::BEGIN);
callCallback(TweenCallback::START);
}
}
void BaseTween::testRelaunch()
{
if (!isIterationStep && repeatCnt >= 0 && step < 0 && currentTime+deltaTime >= 0)
{
// assert(step == -1);
isIterationStep = true;
step = 0;
float delta = 0-currentTime;
deltaTime -= delta;
currentTime = 0;
callCallback(TweenCallback::BEGIN);
callCallback(TweenCallback::START);
updateOverride(step, step-1, isIterationStep, delta);
}
else if (!isIterationStep && repeatCnt >= 0 && step > repeatCnt*2 && currentTime+deltaTime < 0)
{
// assert(step == repeatCnt*2 + 1);
isIterationStep = true;
step = repeatCnt*2;
float delta = 0-currentTime;
deltaTime -= delta;
currentTime = duration;
callCallback(TweenCallback::BACK_BEGIN);
callCallback(TweenCallback::BACK_START);
updateOverride(step, step+1, isIterationStep, delta);
}
}
void BaseTween::updateStep()
{
while (isValid(step))
{
if (!isIterationStep && currentTime+deltaTime <= 0)
{
isIterationStep = true;
step -= 1;
float delta = 0-currentTime;
deltaTime -= delta;
currentTime = duration;
if (isReverse(step)) forceStartValues();
else forceEndValues();
callCallback(TweenCallback::BACK_START);
updateOverride(step, step+1, isIterationStep, delta);
}
else if (!isIterationStep && currentTime+deltaTime >= repeatDelay)
{
isIterationStep = true;
step += 1;
float delta = repeatDelay-currentTime;
deltaTime -= delta;
currentTime = 0;
if (isReverse(step)) forceEndValues(); else forceStartValues();
callCallback(TweenCallback::START);
updateOverride(step, step-1, isIterationStep, delta);
}
else if (isIterationStep && currentTime+deltaTime < 0)
{
isIterationStep = false;
step -= 1;
float delta = 0-currentTime;
deltaTime -= delta;
currentTime = 0;
updateOverride(step, step+1, isIterationStep, delta);
callCallback(TweenCallback::BACK_END);
if (step < 0 && repeatCnt >= 0) callCallback(TweenCallback::BACK_COMPLETE);
else currentTime = repeatDelay;
}
else if (isIterationStep && currentTime+deltaTime > duration)
{
isIterationStep = false;
step += 1;
float delta = duration-currentTime;
deltaTime -= delta;
currentTime = duration;
updateOverride(step, step-1, isIterationStep, delta);
callCallback(TweenCallback::END);
if (step > repeatCnt*2 && repeatCnt >= 0) callCallback(TweenCallback::COMPLETE);
currentTime = 0;
}
else if (isIterationStep)
{
float delta = deltaTime;
deltaTime -= delta;
currentTime += delta;
updateOverride(step, step, isIterationStep, delta);
break;
}
else
{
float delta = deltaTime;
deltaTime -= delta;
currentTime += delta;
break;
}
}
}
void BaseTween::testCompletion()
{
isFinishedFlag = repeatCnt >= 0 && (step > repeatCnt*2 || step < 0);
}
}

View File

@ -1,796 +0,0 @@
//
// Tween.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* Core class of the Tween Engine. A Tween is basically an interpolation
* between two values of an object attribute. However, the main interest of a
* Tween is that you can apply an easing formula on this interpolation, in
* order to smooth the transitions or to achieve cool effects like springs or
* bounces.
* <p/>
*
* The Universal Tween Engine is called "universal" because it is able to apply
* interpolations on every attribute from every possible object. Therefore,
* every object in your application can be animated with cool effects: it does
* not matter if your application is a game, a desktop interface or even a
* console program! If it makes sense to animate something, then it can be
* animated through this engine.
* <p/>
*
* This class contains many static factory methods to create and instantiate
* new interpolations easily. The common way to create a Tween is by using one
* of these factories:
* <p/>
*
* - Tween.to(...)<br/>
* - Tween.from(...)<br/>
* - Tween.set(...)<br/>
* - Tween.call(...)
* <p/>
*
* <h2>Example - firing a Tween</h2>
*
* The following example will move the target horizontal position from its
* current value to x=200 and y=300, during 500ms, but only after a delay of
* 1000ms. The animation will also be repeated 2 times (the starting position
* is registered at the end of the delay, so the animation will automatically
* restart from this registered position).
* <p/>
*
* <pre> {@code
* Tween.to(myObject, POSITION_XY, 0.5f)
* .target(200, 300)
* .ease(Quad.INOUT)
* .delay(1.0f)
* .repeat(2, 0.2f)
* .start(myManager);
* }</pre>
*
* Tween life-cycles can be automatically managed for you, thanks to the
* {@link TweenManager} class. If you choose to manage your tween when you start
* it, then you don't need to care about it anymore. <b>Tweens are
* <i>fire-and-forget</i>: don't think about them anymore once you started
* them (if they are managed of course).</b>
* <p/>
*
* You need to periodicaly update the tween engine, in order to compute the new
* values. If your tweens are managed, only update the manager; else you need
* to call {@link #update()} on your tweens periodically.
* <p/>
*
* <h2>Example - setting up the engine</h2>
*
* The engine cannot directly change your objects attributes, since it doesn't
* know them. Therefore, you need to tell him how to get and set the different
* attributes of your objects: <b>you need to implement the {@link
* TweenAccessor} interface for each object class you will animate</b>. Once
* done, don't forget to register these implementations, using the static method
* {@link registerAccessor()}, when you start your application.
*
* @see TweenAccessor
* @see TweenManager
* @see TweenEquation
* @see Timeline
* @author Aurelien Ribon | http://www.aurelienribon.com/
*/
//#define NDEBUG
#include <TweenEngine/Tween.h>
#include <TweenEngine/TweenPool.h>
namespace TweenEngine
{
int Tween::combinedAttrsLimit = 3;
int Tween::waypointsLimit = 0;
/**
* Changes the limit for combined attributes. Defaults to 3 to reduce
* memory footprint.
*/
void Tween::setCombinedAttributesLimit(int limit) { Tween::combinedAttrsLimit = limit; }
/**
* Changes the limit of allowed waypoints for each tween. Defaults to 0 to
* reduce memory footprint.
*/
void Tween::setWaypointsLimit(int limit) { Tween::waypointsLimit = limit; }
/**
* Gets the version number of the library.
*/
const char *Tween::getVersion() { return "6.3.3"; }
/**
* Used for debug purpose. Gets the current number of objects that are
* waiting in the Tween pool.
*/
int Tween::getPoolSize() { return pool.size(); }
/**
* Increases the minimum capacity of the pool. Capacity defaults to 20.
*/
void Tween::ensurePoolCapacity(int minCapacity) { pool.ensureCapacity(minCapacity); }
TweenPool &Tween::pool = *(new TweenPool());
// -------------------------------------------------------------------------
// Static -- factories
// -------------------------------------------------------------------------
/**
* Factory creating a new standard interpolation. This is the most common
* type of interpolation. The starting values are retrieved automatically
* after the delay (if any).
* <br/><br/>
*
* <b>You need to set the target values of the interpolation by using one
* of the target() methods</b>. The interpolation will run from the
* starting values to these target values.
* <br/><br/>
*
* The common use of Tweens is "fire-and-forget": you do not need to care
* for tweens once you added them to a TweenManager, they will be updated
* automatically, and cleaned once finished. Common call:
* <br/><br/>
*
* <pre> {@code
* Tween.to(myObject, POSITION, 1.0f)
* .target(50, 70)
* .ease(Quad.INOUT)
* .start(myManager);
* }</pre>
*
* Several options such as delay, repetitions and callbacks can be added to
* the tween.
*
* @param target The target object of the interpolation.
* @param tweenType The desired type of interpolation.
* @param duration The duration of the interpolation, in milliseconds.
* @return The generated Tween.
*/
Tween &Tween::to(Tweenable& target, int tweenType, float duration)
{
Tween &tween = *(pool.get());
tween.setup(&target, tweenType, duration);
tween.ease(TweenEquations::easeInOutQuad);
tween.path(TweenPaths::catmullRom);
return tween;
}
/**
* Factory creating a new reversed interpolation. The ending values are
* retrieved automatically after the delay (if any).
* <br/><br/>
*
* <b>You need to set the starting values of the interpolation by using one
* of the target() methods</b>. The interpolation will run from the
* starting values to these target values.
* <br/><br/>
*
* The common use of Tweens is "fire-and-forget": you do not need to care
* for tweens once you added them to a TweenManager, they will be updated
* automatically, and cleaned once finished. Common call:
* <br/><br/>
*
* <pre> {@code
* Tween.from(myObject, POSITION, 1.0f)
* .target(0, 0)
* .ease(Quad.INOUT)
* .start(myManager);
* }</pre>
*
* Several options such as delay, repetitions and callbacks can be added to
* the tween.
*
* @param target The target object of the interpolation.
* @param tweenType The desired type of interpolation.
* @param duration The duration of the interpolation, in milliseconds.
* @return The generated Tween.
*/
Tween &Tween::from(Tweenable& target, int tweenType, float duration)
{
Tween &tween = *(pool.get());
tween.setup(&target, tweenType, duration);
tween.ease(TweenEquations::easeInOutQuad);
tween.path(TweenPaths::catmullRom);
tween.isFrom = true;
return tween;
}
/**
* Factory creating a new instantaneous interpolation (thus this is not
* really an interpolation).
* <br/><br/>
*
* <b>You need to set the target values of the interpolation by using one
* of the target() methods</b>. The interpolation will set the target
* attribute to these values after the delay (if any).
* <br/><br/>
*
* The common use of Tweens is "fire-and-forget": you do not need to care
* for tweens once you added them to a TweenManager, they will be updated
* automatically, and cleaned once finished. Common call:
* <br/><br/>
*
* <pre> {@code
* Tween.set(myObject, POSITION)
* .target(50, 70)
* .delay(1.0f)
* .start(myManager);
* }</pre>
*
* Several options such as delay, repetitions and callbacks can be added to
* the tween.
*
* @param target The target object of the interpolation.
* @param tweenType The desired type of interpolation.
* @return The generated Tween.
*/
Tween &Tween::set(Tweenable& target, int tweenType)
{
Tween &tween = *(pool.get());
tween.setup(&target, tweenType, 0);
tween.ease(TweenEquations::easeInOutQuad);
return tween;
}
/**
* Factory creating a new timer. The given callback will be triggered on
* each iteration start, after the delay.
* <br/><br/>
*
* The common use of Tweens is "fire-and-forget": you do not need to care
* for tweens once you added them to a TweenManager, they will be updated
* automatically, and cleaned once finished. Common call:
* <br/><br/>
*
* <pre> {@code
* Tween.call(myCallback)
* .delay(1.0f)
* .repeat(10, 1000)
* .start(myManager);
* }</pre>
*
* @param callback The callback that will be triggered on each iteration
* start.
* @return The generated Tween.
* @see TweenCallback
*/
Tween &Tween::call(TweenCallback &callback)
{
Tween &tween = *(pool.get());
tween.setup(nullptr, -1, 0);
tween.setCallback(&callback);
tween.setCallbackTriggers(TweenCallback::START);
return tween;
}
/**
* Convenience method to create an empty tween. Such object is only useful
* when placed inside animation sequences (see {@link Timeline}), in which
* it may act as a beacon, so you can set a callback on it in order to
* trigger some action at the right moment.
*
* @return The generated Tween.
* @see Timeline
*/
Tween &Tween::mark()
{
Tween &tween = *(pool.get());
tween.setup(nullptr, -1, 0);
return tween;
}
// -------------------------------------------------------------------------
// Setup
// -------------------------------------------------------------------------
Tween::Tween()
{
startValues = new float[combinedAttrsLimit];
targetValues = new float[combinedAttrsLimit];
waypoints = new float[waypointsLimit*combinedAttrsLimit];
accessorBuffer = new float[combinedAttrsLimit];
accessorBufferSize = combinedAttrsLimit;
pathBuffer = new float[(2+waypointsLimit)*combinedAttrsLimit];
pathBufferSize = (2+waypointsLimit)*combinedAttrsLimit;
targetObj = nullptr;
}
Tween::~Tween()
{
delete startValues;
delete targetValues;
delete waypoints;
delete accessorBuffer;
delete pathBuffer;
// if (accessor != nullptr) Block_release(accessor);
}
void Tween::reset()
{
BaseTween::reset();
equation = nullptr;
pathAlgorithm = nullptr;
isFrom = isRelative = false;
combinedAttrsCnt = waypointsCnt = 0;
if (accessorBufferSize != combinedAttrsLimit) {
accessorBuffer = new float[combinedAttrsLimit];
}
if (pathBufferSize != (2+waypointsLimit)*combinedAttrsLimit) {
pathBuffer = new float[(2+waypointsLimit)*combinedAttrsLimit];
}
// if (accessor != nullptr)
// {
// Block_release(accessor);
targetObj = nullptr;
// }
type = -1;
}
void Tween::setup(Tweenable *target, int tweenType, float duration)
{
// assert(duration >= 0);
this->targetObj = target;
this->type = tweenType;
this->duration = duration;
}
// -------------------------------------------------------------------------
// Public API
// -------------------------------------------------------------------------
/**
* Sets the easing equation of the tween. Existing equations are located in
* <i>aurelienribon.tweenengine.equations</i> package, but you can of course
* implement your owns, see {@link TweenEquation}. You can also use the
* {@link TweenEquations} static instances to quickly access all the
* equations. Default equation is Quad.INOUT.
* <p/>
*
* <b>Proposed equations are:</b><br/>
* - Linear.INOUT,<br/>
* - Quad.IN | OUT | INOUT,<br/>
* - Cubic.IN | OUT | INOUT,<br/>
* - Quart.IN | OUT | INOUT,<br/>
* - Quint.IN | OUT | INOUT,<br/>
* - Circ.IN | OUT | INOUT,<br/>
* - Sine.IN | OUT | INOUT,<br/>
* - Expo.IN | OUT | INOUT,<br/>
* - Back.IN | OUT | INOUT,<br/>
* - Bounce.IN | OUT | INOUT,<br/>
* - Elastic.IN | OUT | INOUT
*
* @return The current tween, for chaining instructions.
* @see TweenEquation
* @see TweenEquations
*/
Tween &Tween::ease(TweenEquation &easeEquation)
{
this->equation = &easeEquation;
return *this;
}
/**
* Sets the target value of the interpolation. The interpolation will run
* from the <b>value at start time (after the delay, if any)</b> to this
* target value.
* <p/>
*
* To sum-up:<br/>
* - start value: value at start time, after delay<br/>
* - end value: param
*
* @param targetValue The target value of the interpolation.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::target(float targetValue)
{
targetValues[0] = targetValue;
return *this;
}
/**
* Sets the target values of the interpolation. The interpolation will run
* from the <b>values at start time (after the delay, if any)</b> to these
* target values.
* <p/>
*
* To sum-up:<br/>
* - start values: values at start time, after delay<br/>
* - end values: params
*
* @param targetValue1 The 1st target value of the interpolation.
* @param targetValue2 The 2nd target value of the interpolation.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::target(float targetValue1, float targetValue2)
{
targetValues[0] = targetValue1;
targetValues[1] = targetValue2;
return *this;
}
/**
* Sets the target values of the interpolation. The interpolation will run
* from the <b>values at start time (after the delay, if any)</b> to these
* target values.
* <p/>
*
* To sum-up:<br/>
* - start values: values at start time, after delay<br/>
* - end values: params
*
* @param targetValue1 The 1st target value of the interpolation.
* @param targetValue2 The 2nd target value of the interpolation.
* @param targetValue3 The 3rd target value of the interpolation.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::target(float targetValue1, float targetValue2, float targetValue3)
{
targetValues[0] = targetValue1;
targetValues[1] = targetValue2;
targetValues[2] = targetValue3;
return *this;
}
Tween &Tween::target(float *targetValues, int len)
{
if (len <= combinedAttrsLimit)
{
for (int i=0; i<len; i++)
this->targetValues[i] = targetValues[i];
}
return *this;
}
/**
* Sets the target value of the interpolation, relatively to the <b>value
* at start time (after the delay, if any)</b>.
* <p/>
*
* To sum-up:<br/>
* - start value: value at start time, after delay<br/>
* - end value: param + value at start time, after delay
*
* @param targetValue The relative target value of the interpolation.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::targetRelative(float targetValue)
{
isRelative = true;
targetValues[0] = isInitialized() ? targetValue + startValues[0] : targetValue;
return *this;
}
/**
* Sets the target values of the interpolation, relatively to the <b>values
* at start time (after the delay, if any)</b>.
* <p/>
*
* To sum-up:<br/>
* - start values: values at start time, after delay<br/>
* - end values: params + values at start time, after delay
*
* @param targetValue1 The 1st relative target value of the interpolation.
* @param targetValue2 The 2nd relative target value of the interpolation.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::targetRelative(float targetValue1, float targetValue2)
{
isRelative = true;
targetValues[0] = isInitialized() ? targetValue1 + startValues[0] : targetValue1;
targetValues[1] = isInitialized() ? targetValue2 + startValues[1] : targetValue2;
return *this;
}
/**
* Sets the target values of the interpolation, relatively to the <b>values
* at start time (after the delay, if any)</b>.
* <p/>
*
* To sum-up:<br/>
* - start values: values at start time, after delay<br/>
* - end values: params + values at start time, after delay
*
* @param targetValue1 The 1st relative target value of the interpolation.
* @param targetValue2 The 2nd relative target value of the interpolation.
* @param targetValue3 The 3rd relative target value of the interpolation.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::targetRelative(float targetValue1, float targetValue2, float targetValue3)
{
isRelative = true;
targetValues[0] = isInitialized() ? targetValue1 + startValues[0] : targetValue1;
targetValues[1] = isInitialized() ? targetValue2 + startValues[1] : targetValue2;
targetValues[2] = isInitialized() ? targetValue3 + startValues[2] : targetValue3;
return *this;
}
/**
* Sets the target values of the interpolation, relatively to the <b>values
* at start time (after the delay, if any)</b>.
* <p/>
*
* To sum-up:<br/>
* - start values: values at start time, after delay<br/>
* - end values: params + values at start time, after delay
*
* @param targetValues The relative target values of the interpolation.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::targetRelative(float *targetValues, int len)
{
if (len <= combinedAttrsLimit)
{
for (int i=0; i<len; i++)
this->targetValues[i] = isInitialized() ? targetValues[i] + startValues[i] : targetValues[i];
}
isRelative = true;
return *this;
}
/**
* Adds a waypoint to the path. The default path runs from the start values
* to the end values linearly. If you add waypoints, the default path will
* use a smooth catmull-rom spline to navigate between the waypoints, but
* you can change this behavior by using the {@link #path(TweenPath)}
* method.
* <p/>
* Note that if you want waypoints relative to the start values, use one of
* the .targetRelative() methods to define your target.
*
* @param targetValue The target of this waypoint.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::waypoint(float targetValue)
{
if (waypointsCnt < waypointsLimit)
{
waypoints[waypointsCnt] = targetValue;
waypointsCnt += 1;
}
return *this;
}
/**
* Adds a waypoint to the path. The default path runs from the start values
* to the end values linearly. If you add waypoints, the default path will
* use a smooth catmull-rom spline to navigate between the waypoints, but
* you can change this behavior by using the {@link #path(TweenPath)}
* method.
* <p/>
* Note that if you want waypoints relative to the start values, use one of
* the .targetRelative() methods to define your target.
*
* @param targetValue1 The 1st target of this waypoint.
* @param targetValue2 The 2nd target of this waypoint.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::waypoint(float targetValue1, float targetValue2)
{
if (waypointsCnt < waypointsLimit)
{
waypoints[waypointsCnt*2] = targetValue1;
waypoints[waypointsCnt*2+1] = targetValue2;
waypointsCnt += 1;
}
return *this;
}
/**
* Adds a waypoint to the path. The default path runs from the start values
* to the end values linearly. If you add waypoints, the default path will
* use a smooth catmull-rom spline to navigate between the waypoints, but
* you can change this behavior by using the {@link #path(TweenPath)}
* method.
* <p/>
* Note that if you want waypoints relative to the start values, use one of
* the .targetRelative() methods to define your target.
*
* @param targetValue1 The 1st target of this waypoint.
* @param targetValue2 The 2nd target of this waypoint.
* @param targetValue3 The 3rd target of this waypoint.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::waypoint(float targetValue1, float targetValue2, float targetValue3)
{
if (waypointsCnt < waypointsLimit)
{
waypoints[waypointsCnt*3] = targetValue1;
waypoints[waypointsCnt*3+1] = targetValue2;
waypoints[waypointsCnt*3+2] = targetValue3;
waypointsCnt += 1;
}
return *this;
}
/**
* Adds a waypoint to the path. The default path runs from the start values
* to the end values linearly. If you add waypoints, the default path will
* use a smooth catmull-rom spline to navigate between the waypoints, but
* you can change this behavior by using the {@link #path(TweenPath)}
* method.
* <p/>
* Note that if you want waypoints relative to the start values, use one of
* the .targetRelative() methods to define your target.
*
* @param targetValues The targets of this waypoint.
* @return The current tween, for chaining instructions.
*/
Tween &Tween::waypoint(float *targetValues, int len)
{
if (waypointsCnt < waypointsLimit)
{
for (int i=0; i<len; i++)
this->waypoints[waypointsCnt*len+i] = targetValues[i];
waypointsCnt += 1;
}
return *this;
}
/**
* Sets the algorithm that will be used to navigate through the waypoints,
* from the start values to the end values. Default is a catmull-rom spline,
* but you can find other paths in the {@link TweenPaths} class.
*
* @param path A TweenPath implementation.
* @return The current tween, for chaining instructions.
* @see TweenPath
* @see TweenPaths
*/
Tween &Tween::path(TweenPath &path)
{
this->pathAlgorithm = &path;
return *this;
}
// -------------------------------------------------------------------------
// Getters
// -------------------------------------------------------------------------
/**
* Gets the easing equation.
*/
TweenEquation *Tween::getEasing() { return equation; }
/**
* Gets the target values. The returned buffer is as long as the maximum
* allowed combined values. Therefore, you're surely not interested in all
* its content. Use {@link #getCombinedTweenCount()} to get the number of
* interesting slots.
*/
float *Tween::getTargetValues() { return targetValues; }
/**
* Gets the number of combined animations.
*/
int Tween::getCombinedAttributesCount() { return combinedAttrsCnt; }
// -------------------------------------------------------------------------
// Base Class
// -------------------------------------------------------------------------
Tween &Tween::build()
{
if (targetObj != nullptr) {
combinedAttrsCnt = targetObj->getValues(type, accessorBuffer);
}
// assert(combinedAttrsCnt <= combinedAttrsLimit);
return *this;
}
void Tween::free() { pool.free(this); }
void Tween::initializeOverride()
{
targetObj->getValues(type, startValues);
for (int i=0; i<combinedAttrsCnt; i++) {
targetValues[i] += isRelative ? startValues[i] : 0;
for (int ii=0; ii<waypointsCnt; ii++) {
waypoints[ii*combinedAttrsCnt+i] += isRelative ? startValues[i] : 0;
}
if (isFrom) {
float tmp = startValues[i];
startValues[i] = targetValues[i];
targetValues[i] = tmp;
}
}
}
void Tween::updateOverride(int step, int lastStep, bool isIterationStep, float delta)
{
if (equation == nullptr) return;
// Case iteration end has been reached
if (!isIterationStep && step > lastStep)
{
targetObj->setValues(type, isReverse(lastStep) ? startValues : targetValues);
return;
}
if (!isIterationStep && step < lastStep)
{
targetObj->setValues(type, isReverse(lastStep) ? targetValues : startValues);
return;
}
// Validation
// assert(isIterationStep);
// assert(getCurrentTime() >= 0);
// assert(getCurrentTime() <= duration);
// Case duration equals zero
if (duration < 0.00000000001f && delta > -0.00000000001f)
{
targetObj->setValues(type, isReverse(step) ? targetValues : startValues);
return;
}
if (duration < 0.00000000001f && delta < 0.00000000001f) {
targetObj->setValues(type, isReverse(step) ? startValues : targetValues);
return;
}
// Normal behavior
float time = isReverse(step) ? duration - getCurrentTime() : getCurrentTime();
float t = equation->compute(time/duration);
if (waypointsCnt == 0 || pathAlgorithm == nullptr)
{
for (int i=0; i<combinedAttrsCnt; i++)
{
accessorBuffer[i] = startValues[i] + t * (targetValues[i] - startValues[i]);
}
}
else
{
for (int i=0; i<combinedAttrsCnt; i++)
{
pathBuffer[0] = startValues[i];
pathBuffer[1+waypointsCnt] = targetValues[i];
for (int ii=0; ii<waypointsCnt; ii++)
{
pathBuffer[ii+1] = waypoints[ii*combinedAttrsCnt+i];
}
accessorBuffer[i] = pathAlgorithm->compute(t, pathBuffer, waypointsCnt+2);
}
}
targetObj->setValues(type, accessorBuffer);
}
void Tween::forceStartValues(){
targetObj->setValues(type, startValues);
}
void Tween::forceEndValues(){
targetObj->setValues(type, targetValues);
}
int Tween::getTweenCount() { return 1; }
int Tween::getTimelineCount() { return 0; }
}

View File

@ -1,53 +0,0 @@
//
// Equations.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <TweenEngine/TweenEquations.h>
namespace TweenEngine
{
TweenEquation &TweenEquations::easeInQuad = *(new QuadIn());
TweenEquation &TweenEquations::easeOutQuad = *(new QuadOut());
TweenEquation &TweenEquations::easeInOutQuad = *(new QuadInOut());
TweenEquation &TweenEquations::easeInOutLinear = *(new LinearInOut());
TweenEquation &TweenEquations::easeInBack = *(new BackIn());
TweenEquation &TweenEquations::easeOutBack = *(new BackOut());
TweenEquation &TweenEquations::easeInOutBack = *(new BackInOut());
TweenEquation &TweenEquations::easeInBounce = *(new BounceIn());
TweenEquation &TweenEquations::easeOutBounce = *(new BounceOut());
TweenEquation &TweenEquations::easeInOutBounce = *(new BounceInOut());
TweenEquation &TweenEquations::easeInCirc = *(new CircIn());
TweenEquation &TweenEquations::easeOutCirc = *(new CircOut());
TweenEquation &TweenEquations::easeInOutCirc = *(new CircInOut());
TweenEquation &TweenEquations::easeInCubic = *(new CubicIn());
TweenEquation &TweenEquations::easeOutCubic = *(new CubicOut());
TweenEquation &TweenEquations::easeInOutCubic = *(new CubicInOut());
TweenEquation &TweenEquations::easeInElastic = *(new ElasticIn());
TweenEquation &TweenEquations::easeOutElastic = *(new ElasticOut());
TweenEquation &TweenEquations::easeInOutElastic = *(new ElasticInOut());
TweenEquation &TweenEquations::easeInExpo = *(new ExpoIn());
TweenEquation &TweenEquations::easeOutExpo = *(new ExpoOut());
TweenEquation &TweenEquations::easeInOutExpo = *(new ExpoInOut());
TweenEquation &TweenEquations::easeInQuart = *(new QuartIn());
TweenEquation &TweenEquations::easeOutQuart = *(new QuartOut());
TweenEquation &TweenEquations::easeInOutQuart = *(new QuartInOut());
TweenEquation &TweenEquations::easeInQuint = *(new QuintIn());
TweenEquation &TweenEquations::easeOutQuint = *(new QuintOut());
TweenEquation &TweenEquations::easeInOutQuint = *(new QuintInOut());
TweenEquation &TweenEquations::easeInSine = *(new SineIn());
TweenEquation &TweenEquations::easeOutSine = *(new SineOut());
TweenEquation &TweenEquations::easeInOutSine = *(new SineInOut());
}

View File

@ -1,186 +0,0 @@
//
// TweenManager.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <TweenEngine/TweenManager.h>
#include <TweenEngine/BaseTween.h>
namespace TweenEngine
{
// -------------------------------------------------------------------------
// Static API
// -------------------------------------------------------------------------
/**
* Disables or enables the "auto remove" mode of any tween manager for a
* particular tween or timeline. This mode is activated by default. The
* interest of desactivating it is to prevent some tweens or timelines from
* being automatically removed from a manager once they are finished.
* Therefore, if you update a manager backwards, the tweens or timelines
* will be played again, even if they were finished.
*/
void TweenManager::setAutoRemove(BaseTween &object, bool value)
{
object.isAutoRemoveEnabled = value;
}
/**
* Disables or enables the "auto start" mode of any tween manager for a
* particular tween or timeline. This mode is activated by default. If it
* is not enabled, add a tween or timeline to any manager won't start it
* automatically, and you'll need to call .start() manually on your object.
*/
void TweenManager::setAutoStart(BaseTween &object, bool value)
{
object.isAutoStartEnabled = value;
}
int getTweensCount(std::vector<BaseTween *> objs)
{
int cnt = 0;
for (int i=0, n=objs.size(); i<n; i++)
{
cnt += objs[i]->getTweenCount();
}
return cnt;
}
int getTimelinesCount(std::vector<BaseTween *> objs)
{
int cnt = 0;
for (int i=0, n=objs.size(); i<n; i++)
{
cnt += objs[i]->getTimelineCount();
}
return cnt;
}
bool isTweenFinished(BaseTween *obj)
{
if (obj->isFinished() && obj->isAutoRemoveEnabled)
{
obj->free();
return true;
}
return false;
}
// -------------------------------------------------------------------------
// API
// -------------------------------------------------------------------------
TweenManager::TweenManager() : objects()
{
objects.reserve(20);
}
/**
* Adds a tween or timeline to the manager and starts or restarts it.
*
* @return The manager, for instruction chaining.
*/
TweenManager &TweenManager::add(BaseTween &object)
{
bool isPresent = (std::find(objects.begin(), objects.end(), &object) != objects.end());
if (!isPresent) objects.push_back(&object);
if (object.isAutoStartEnabled) object.start();
return *this;
}
/**
* Kills every managed tweens and timelines.
*/
void TweenManager::killAll()
{
for (int i=0, n=objects.size(); i<n; i++)
{
BaseTween *obj = objects[i];
obj->kill();
}
}
/**
* Increases the minimum capacity of the manager. Defaults to 20.
*/
void TweenManager::ensureCapacity(int minCapacity) { objects.reserve(minCapacity); }
/**
* Pauses the manager. Further update calls won't have any effect.
*/
void TweenManager::pause() { isPaused = true; }
/**
* Resumes the manager, if paused.
*/
void TweenManager::resume() { isPaused = false; }
/**
* Updates every tweens with a delta time ang handles the tween life-cycles
* automatically. If a tween is finished, it will be removed from the
* manager. The delta time represents the elapsed time between now and the
* last update call. Each tween or timeline manages its local time, and adds
* this delta to its local time to update itself.
* <p/>
*
* Slow motion, fast motion and backward play can be easily achieved by
* tweaking this delta time. Multiply it by -1 to play the animation
* backward, or by 0.5 to play it twice slower than its normal speed.
*/
void TweenManager::update(float delta)
{
// Remove tweens that are finished
objects.erase(std::remove_if(objects.begin(),objects.end(),isTweenFinished), objects.end());
if (!isPaused)
{
if (delta >= 0)
{
for (int i=0, n=objects.size(); i<n; i++) objects[i]->update(delta);
}
else
{
for (int i=objects.size()-1; i>=0; i--) objects[i]->update(delta);
}
}
}
/**
* Gets the number of managed objects. An object may be a tween or a
* timeline. Note that a timeline only counts for 1 object, since it
* manages its children itself.
* <p/>
* To get the count of running tweens, see {@link #getRunningTweensCount()}.
*/
int TweenManager::size() { return objects.size(); }
/**
* Gets the number of running tweens. This number includes the tweens
* located inside timelines (and nested timelines).
* <p/>
* <b>Provided for debug purpose only.</b>
*/
int TweenManager::getRunningTweensCount() { return getTweensCount(objects); }
/**
* Gets the number of running timelines. This number includes the timelines
* nested inside other timelines.
* <p/>
* <b>Provided for debug purpose only.</b>
*/
int TweenManager::getRunningTimelinesCount() { return getTimelinesCount(objects); }
/**
* Gets a list of every managed object.
* <p/>
* <b>Provided for debug purpose only.</b>
*/
std::vector<BaseTween *> &TweenManager::getObjects()
{
return objects;
}
}

View File

@ -1,17 +0,0 @@
//
// TweenPaths.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <TweenEngine/TweenPaths.h>
#include <TweenEngine/paths/LinearPath.h>
#include <TweenEngine/paths/CatmullRom.h>
namespace TweenEngine
{
TweenPath &TweenPaths::linear = *(new LinearPath());
TweenPath &TweenPaths::catmullRom = *(new CatmullRom());
}

View File

@ -1,39 +0,0 @@
//
// TweenPool.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <TweenEngine/TweenPool.h>
#include <TweenEngine/Tween.h>
namespace TweenEngine
{
void TweenPoolCallback::onPool(Tween *obj)
{
obj->reset();
}
void TweenPoolCallback::onUnPool(Tween *obj)
{
obj->reset();
}
TweenPool::TweenPool() : Pool<TweenEngine::Tween>(20, new TweenPoolCallback())
{
}
Tween *TweenPool::create() { return new Tween(); }
//TweenPoolCallback *Tween::poolCallback = new TweenPoolCallback();
//TweenPool *Tween::pool = new TweenPool(20, Tween::poolCallback);
/*
private static final Pool<Tween> pool = new Pool<Tween>(20, poolCallback) {
@Override protected Tween create() {return new Tween();}
};
*/
}

View File

@ -1,34 +0,0 @@
//
// Back.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <TweenEngine/equations/Back.h>
#define S (1.70158f)
namespace TweenEngine
{
float BackIn::compute(float t) { return t*t*((S+1)*t - S); }
const char *BackIn::toString() { return "Back.IN"; }
float BackOut::compute(float t) {
t -= 1;
return (t*t*((S+1)*t + S) + 1);
}
const char *BackOut::toString() { return "Back.OUT"; }
float BackInOut::compute(float t) {
float s=S*1.525;
t*=2;
if (t < 1) {
return 0.5f*(t*t*((s+1)*t - s));
} else {
t -= 2;
return 0.5f*(t*t*((s+1)*t + s) + 2);
}
}
const char *BackInOut::toString() { return "Back.INOUT"; }
}

View File

@ -1,42 +0,0 @@
//
// Bounce.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <TweenEngine/equations/Bounce.h>
namespace TweenEngine
{
inline float outBounce(float t) {
if (t < (1/2.75)) {
return 7.5625f*t*t;
} else if (t < (2/2.75)) {
t = t - (1.5 / 2.75);
return (7.5625 * t * t + 0.75);
} else if (t < (2.5/2.75)) {
t = t - (2.25 / 2.75);
return (7.5625 * t * t + 0.9375);
} else {
t = t - (2.625 / 2.75);
return (7.5625 * t * t + 0.984375);
}
}
inline float inBounce(float t) {
return 1 - outBounce(1-t);
}
float BounceIn::compute(float t) { return inBounce(t); }
const char *BounceIn::toString() { return "Bounce.IN"; }
float BounceOut::compute(float t) { return outBounce(t); }
const char *BounceOut::toString() { return "Bounce.OUT"; }
float BounceInOut::compute(float t) {
if (t < 0.5f) return (inBounce(t*2) * 0.5f);
else return (outBounce(t*2-1) * 0.5f + 0.5f);
}
const char *BounceInOut::toString() { return "Bounce.INOUT"; }
}

View File

@ -1,30 +0,0 @@
//
// Circ.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <math.h>
#include <TweenEngine/equations/Circ.h>
namespace TweenEngine
{
float CircIn::compute(float t) { return (float) -sqrt(1 - t*t) - 1; }
const char *CircIn::toString() { return "Circ.IN"; }
float CircOut::compute(float t) { return (float) sqrt(1 - (t-1)*(t-1)); }
const char *CircOut::toString() { return "Circ.OUT"; }
float CircInOut::compute(float t) {
t *= 2;
if (t < 1) {
return (-0.5 * (sqrt(1 - t*t) - 1));
} else {
t -= 2;
return (0.5 * (sqrt(1 - t*t) + 1));
}
}
const char *CircInOut::toString() { return "Circ.INOUT"; }
}

View File

@ -1,31 +0,0 @@
//
// Cubic.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <TweenEngine/equations/Cubic.h>
namespace TweenEngine
{
float CubicIn::compute(float t) { return t*t*t; }
const char *CubicIn::toString() { return "Cubic.IN"; }
float CubicOut::compute(float t) {
t -= 1;
return t*t*t + 1;
}
const char *CubicOut::toString() { return "Cubic.OUT"; }
float CubicInOut::compute(float t) {
t *= 2;
if (t < 1) {
return 0.5f * t*t*t;
} else {
t -= 2;
return 0.5f * (t*t*t + 2);
}
}
const char *CubicInOut::toString() { return "Cubic.INOUT"; }
}

View File

@ -1,80 +0,0 @@
//
// Elastic.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <math.h>
#include <TweenEngine/equations/Elastic.h>
#define M_PI 3.14159265358979323846
#define M_TWOPI (M_PI * 2.0)
namespace TweenEngine
{
float ElasticIn::compute(float t) {
float a = amplitude;
float p = period;
if (t == 0) return 0;
if (t == 1) return 1;
if (!isPeriodSet) p = 0.3;
float s;
if (!isAmplitudeSet || a < 1) {
a = 1;
s = p/4.0;
} else {
s = p/(M_TWOPI) * (float)asin(1/a);
}
t -= 1;
return -(a*(float)pow(2,10*t) * (float)sin((t-s)*(M_TWOPI)/p ));
}
const char *ElasticIn::toString() { return "Elastic.IN"; }
void ElasticIn::setAmplitude(float a) { this->amplitude = a; this->isAmplitudeSet = true; }
void ElasticIn::setPeriod(float p) { this->period = p; this->isPeriodSet = true; }
float ElasticOut::compute(float t) {
float a = amplitude;
float p = period;
if (t==0) return 0;
if (t==1) return 1;
if (!isPeriodSet) p = 0.3f;
float s;
if (!isAmplitudeSet || a < 1) {
a = 1;
s = p/4.0;
} else {
s = p/(M_TWOPI) * (float)asin(1/a);
}
return a*(float)pow(2,-10*t) * (float)sin((t-s)*(M_TWOPI)/p ) + 1;
}
const char *ElasticOut::toString() { return "Elastic.OUT"; }
void ElasticOut::setAmplitude(float a) { this->amplitude = a; this->isAmplitudeSet = true; }
void ElasticOut::setPeriod(float p) { this->period = p; this->isPeriodSet = true; }
float ElasticInOut::compute(float t) {
float a = amplitude;
float p = period;
if (t==0) return 0;
t *= 2;
if (t==2) return 1;
if (!isPeriodSet) p = 0.3f*1.5f;
float s;
if (!isAmplitudeSet || a < 1) {
a = 1;
s = p/4.0;
} else {
s = p/(M_TWOPI) * (float)asin(1/a);
}
if (t < 1) {
t -= 1;
return -0.5f*(a*(float)pow(2,10*t) * (float)sin((t-s)*(M_TWOPI)/p));
} else {
t -= 1;
return a*(float)pow(2,-10*t) * (float)sin((t-s)*(M_TWOPI)/p)*0.5f + 1;
}
}
const char *ElasticInOut::toString() { return "Elastic.INOUT"; }
void ElasticInOut::setAmplitude(float a) { this->amplitude = a; this->isAmplitudeSet = true; }
void ElasticInOut::setPeriod(float p) { this->period = p; this->isPeriodSet = true; }
}

View File

@ -1,35 +0,0 @@
//
// Expo.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <math.h>
#include <TweenEngine/equations/Expo.h>
namespace TweenEngine
{
float ExpoIn::compute(float t) {
return (t==0) ? 0 : (float)pow(2,10*(t-1));
}
const char *ExpoIn::toString() { return "Expo.IN"; }
float ExpoOut::compute(float t) {
return (t==1) ? 1 : -(float)pow(2,-10*t) + 1;
}
const char *ExpoOut::toString() { return "Expo.OUT"; }
float ExpoInOut::compute(float t) {
if (t==0) return 0;
if (t==1) return 1;
t *= 2;
if (t < 1) {
return 0.5f * (float)pow(2,10*(t-1));
} else {
t -= 1;
return 0.5f * (-(float)pow(2,-10*t) + 2);
}
}
const char *ExpoInOut::toString() { return "Expo.INOUT"; }
}

View File

@ -1,20 +0,0 @@
//
// Linear.cpp
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* Easing equation based on Robert Penner's work:
* http://robertpenner.com/easing/
* @author Aurelien Ribon | http://www.aurelienribon.com/
*/
#include <TweenEngine/equations/Linear.h>
namespace TweenEngine
{
float LinearInOut::compute(float t) { return t; }
const char *LinearInOut::toString() { return "Linear.INOUT"; }
}

View File

@ -1,31 +0,0 @@
//
// Quad.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
/**
* Easing equation based on Robert Penner's work:
* http://robertpenner.com/easing/
* @author Aurelien Ribon | http://www.aurelienribon.com/
*/
#include <TweenEngine/equations/Quad.h>
namespace TweenEngine
{
float QuadIn::compute(float t) { return t*t; }
const char *QuadIn::toString() { return "Quad.IN"; }
float QuadOut::compute(float t) { return -t*(t-2); }
const char *QuadOut::toString() { return "Quad.OUT"; }
float QuadInOut::compute(float t)
{
t*=2;
if (t < 1) return 0.5f*t*t;
return -0.5f * ((t-1)*(t-3) - 1);
}
const char *QuadInOut::toString() { return "Quad.INOUT"; }
}

View File

@ -1,31 +0,0 @@
//
// Quart.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <TweenEngine/equations/Quart.h>
namespace TweenEngine
{
float QuartIn::compute(float t) { return t*t*t*t; }
const char *QuartIn::toString() { return "Quart.IN"; }
float QuartOut::compute(float t) {
t-=1;
return -(t*t*t*t - 1);
}
const char *QuartOut::toString() { return "Quart.OUT"; }
float QuartInOut::compute(float t) {
t *= 2;
if (t < 1) {
return 0.5f*t*t*t*t;
} else {
t -= 2;
return -0.5f * (t*t*t*t - 2);
}
}
const char *QuartInOut::toString() { return "Quart.INOUT"; }
}

View File

@ -1,31 +0,0 @@
//
// Quint.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <TweenEngine/equations/Quint.h>
namespace TweenEngine
{
float QuintIn::compute(float t) { return t*t*t*t*t; }
const char *QuintIn::toString() { return "Quint.IN"; }
float QuintOut::compute(float t) {
t-=1;
return -(t*t*t*t*t - 1);
}
const char *QuintOut::toString() { return "Quint.OUT"; }
float QuintInOut::compute(float t) {
t *= 2;
if (t < 1) {
return 0.5f*t*t*t*t*t;
} else {
t -= 2;
return -0.5f * (t*t*t*t*t - 2);
}
}
const char *QuintInOut::toString() { return "Quint.INOUT"; }
}

View File

@ -1,24 +0,0 @@
//
// Sine.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <math.h>
#include <TweenEngine/equations/Sine.h>
#define M_PI 3.14159265358979323846
#define M_PI_2 1.57079632679489661923
namespace TweenEngine
{
float SineIn::compute(float t) { return (float)-cos(t * (M_PI_2)) + 1; }
const char *SineIn::toString() { return "Sine.IN"; }
float SineOut::compute(float t) { return (float)sin(t * (M_PI_2)); }
const char *SineOut::toString() { return "Sine.OUT"; }
float SineInOut::compute(float t) { return -0.5f * ((float)cos(M_PI*t) - 1); }
const char *SineInOut::toString() { return "Sine.INOUT"; }
}

View File

@ -1,47 +0,0 @@
//
// CatmullRom.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <math.h>
#include <TweenEngine/paths/CatmullRom.h>
namespace TweenEngine
{
float CatmullRom::compute(float t, float *points, int pointsCnt)
{
int segment = (int) floor((pointsCnt-1) * t);
segment = segment > 0 ? segment : 0;
segment = segment < (pointsCnt-2) ? segment : pointsCnt-2;
t = t * (pointsCnt-1) - segment;
if (segment == 0)
{
return catmullRomSpline(points[0], points[0], points[1], points[2], t);
}
if (segment == pointsCnt-2)
{
return catmullRomSpline(points[pointsCnt-3], points[pointsCnt-2], points[pointsCnt-1], points[pointsCnt-1], t);
}
return catmullRomSpline(points[segment-1], points[segment], points[segment+1], points[segment+2], t);
}
float CatmullRom::catmullRomSpline(float a, float b, float c, float d, float t)
{
float t1 = (c - a) * 0.5f;
float t2 = (d - b) * 0.5f;
float h1 = +2 * t * t * t - 3 * t * t + 1;
float h2 = -2 * t * t * t + 3 * t * t;
float h3 = t * t * t - 2 * t * t + t;
float h4 = t * t * t - t * t;
return b * h1 + c * h2 + t1 * h3 + t2 * h4;
}
}

View File

@ -1,23 +0,0 @@
//
// Linear.cpp
//
// This code is derived from Universal Tween Engine
// Licensed under Apache License 2.0 - http://www.apache.org/licenses/LICENSE-2.0
//
#include <math.h>
#include <TweenEngine/paths/LinearPath.h>
namespace TweenEngine
{
float LinearPath::compute(float t, float *points, int pointsCnt)
{
int segment = (int) floor((pointsCnt-1) * t);
segment = segment > 0 ? segment : 0;
segment = segment < (pointsCnt-2) ? segment : pointsCnt-2;
t = t * (pointsCnt-1) - segment;
return points[segment] + t * (points[segment+1] - points[segment]);
}
}