The beginning of 0.9.5

- Remove unused stuff
- Start Moving from c stuff to c++ stuff Like mkdir to filesystem
- Remove usless stuff from config
- Begin with Project Li7
This commit is contained in:
2023-08-28 16:33:16 +02:00
parent 5695110739
commit 5cca34ede4
47 changed files with 88 additions and 37949 deletions

View File

@ -1,5 +0,0 @@
#pragma once
#include <cstddef>
extern unsigned char battery_icons[];
extern size_t battery_icons_size;

View File

@ -1,422 +0,0 @@
// jpgd.h - C++ class for JPEG decompression.
// Richard Geldreich <richgel99@gmail.com>
// See jpgd.cpp for license (Public Domain or Apache 2.0).
#ifndef JPEG_DECODER_H
#define JPEG_DECODER_H
#include <assert.h>
#include <cinttypes>
#include <setjmp.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#ifdef _MSC_VER
#define JPGD_NORETURN __declspec(noreturn)
#elif defined(__GNUC__)
#define JPGD_NORETURN __attribute__((noreturn))
#else
#define JPGD_NORETURN
#endif
#define JPGD_HUFF_TREE_MAX_LENGTH 512
#define JPGD_HUFF_CODE_SIZE_MAX_LENGTH 256
namespace jpgd {
typedef unsigned char uint8;
typedef signed short int16;
typedef unsigned short uint16;
typedef unsigned int uint;
typedef signed int int32;
// Loads a JPEG image from a memory buffer or a file.
// req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA).
// On return, width/height will be set to the image's dimensions, and
// actual_comps will be set to the either 1 (grayscale) or 3 (RGB). Notes: For
// more control over where and how the source data is read, see the
// decompress_jpeg_image_from_stream() function below, or call the jpeg_decoder
// class directly. Requesting a 8 or 32bpp image is currently a little faster
// than 24bpp because the jpeg_decoder class itself currently always unpacks to
// either 8 or 32bpp.
unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data,
int src_data_size, int *width,
int *height, int *actual_comps,
int req_comps,
uint32_t flags = 0);
unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename,
int *width, int *height,
int *actual_comps, int req_comps,
uint32_t flags = 0);
// Success/failure error codes.
enum jpgd_status {
JPGD_SUCCESS = 0,
JPGD_FAILED = -1,
JPGD_DONE = 1,
JPGD_BAD_DHT_COUNTS = -256,
JPGD_BAD_DHT_INDEX,
JPGD_BAD_DHT_MARKER,
JPGD_BAD_DQT_MARKER,
JPGD_BAD_DQT_TABLE,
JPGD_BAD_PRECISION,
JPGD_BAD_HEIGHT,
JPGD_BAD_WIDTH,
JPGD_TOO_MANY_COMPONENTS,
JPGD_BAD_SOF_LENGTH,
JPGD_BAD_VARIABLE_MARKER,
JPGD_BAD_DRI_LENGTH,
JPGD_BAD_SOS_LENGTH,
JPGD_BAD_SOS_COMP_ID,
JPGD_W_EXTRA_BYTES_BEFORE_MARKER,
JPGD_NO_ARITHMITIC_SUPPORT,
JPGD_UNEXPECTED_MARKER,
JPGD_NOT_JPEG,
JPGD_UNSUPPORTED_MARKER,
JPGD_BAD_DQT_LENGTH,
JPGD_TOO_MANY_BLOCKS,
JPGD_UNDEFINED_QUANT_TABLE,
JPGD_UNDEFINED_HUFF_TABLE,
JPGD_NOT_SINGLE_SCAN,
JPGD_UNSUPPORTED_COLORSPACE,
JPGD_UNSUPPORTED_SAMP_FACTORS,
JPGD_DECODE_ERROR,
JPGD_BAD_RESTART_MARKER,
JPGD_BAD_SOS_SPECTRAL,
JPGD_BAD_SOS_SUCCESSIVE,
JPGD_STREAM_READ,
JPGD_NOTENOUGHMEM,
JPGD_TOO_MANY_SCANS
};
// Input stream interface.
// Derive from this class to read input data from sources other than files or
// memory. Set m_eof_flag to true when no more data is available. The decoder is
// rather greedy: it will keep on calling this method until its internal input
// buffer is full, or until the EOF flag is set. It the input stream contains
// data after the JPEG stream's EOI (end of image) marker it will probably be
// pulled into the internal buffer. Call the get_total_bytes_read() method to
// determine the actual size of the JPEG stream after successful decoding.
class jpeg_decoder_stream {
public:
jpeg_decoder_stream() {}
virtual ~jpeg_decoder_stream() {}
// The read() method is called when the internal input buffer is empty.
// Parameters:
// pBuf - input buffer
// max_bytes_to_read - maximum bytes that can be written to pBuf
// pEOF_flag - set this to true if at end of stream (no more bytes remaining)
// Returns -1 on error, otherwise return the number of bytes actually written
// to the buffer (which may be 0). Notes: This method will be called in a loop
// until you set *pEOF_flag to true or the internal buffer is full.
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) = 0;
};
// stdio FILE stream class.
class jpeg_decoder_file_stream : public jpeg_decoder_stream {
jpeg_decoder_file_stream(const jpeg_decoder_file_stream &);
jpeg_decoder_file_stream &operator=(const jpeg_decoder_file_stream &);
FILE *m_pFile;
bool m_eof_flag, m_error_flag;
public:
jpeg_decoder_file_stream();
virtual ~jpeg_decoder_file_stream();
bool open(const char *Pfilename);
void close();
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
};
// Memory stream class.
class jpeg_decoder_mem_stream : public jpeg_decoder_stream {
const uint8 *m_pSrc_data;
uint m_ofs, m_size;
public:
jpeg_decoder_mem_stream() : m_pSrc_data(NULL), m_ofs(0), m_size(0) {}
jpeg_decoder_mem_stream(const uint8 *pSrc_data, uint size)
: m_pSrc_data(pSrc_data), m_ofs(0), m_size(size) {}
virtual ~jpeg_decoder_mem_stream() {}
bool open(const uint8 *pSrc_data, uint size);
void close() {
m_pSrc_data = NULL;
m_ofs = 0;
m_size = 0;
}
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
};
// Loads JPEG file from a jpeg_decoder_stream.
unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream,
int *width, int *height,
int *actual_comps,
int req_comps,
uint32_t flags = 0);
enum {
JPGD_IN_BUF_SIZE = 8192,
JPGD_MAX_BLOCKS_PER_MCU = 10,
JPGD_MAX_HUFF_TABLES = 8,
JPGD_MAX_QUANT_TABLES = 4,
JPGD_MAX_COMPONENTS = 4,
JPGD_MAX_COMPS_IN_SCAN = 4,
JPGD_MAX_BLOCKS_PER_ROW = 16384,
JPGD_MAX_HEIGHT = 32768,
JPGD_MAX_WIDTH = 32768
};
typedef int16 jpgd_quant_t;
typedef int16 jpgd_block_coeff_t;
class jpeg_decoder {
public:
enum { cFlagBoxChromaFiltering = 1, cFlagDisableSIMD = 2 };
// Call get_error_code() after constructing to determine if the stream is
// valid or not. You may call the get_width(), get_height(), etc. methods
// after the constructor is called. You may then either destruct the object,
// or begin decoding the image by calling begin_decoding(), then decode() on
// each scanline.
jpeg_decoder(jpeg_decoder_stream *pStream, uint32_t flags = 0);
~jpeg_decoder();
// Call this method after constructing the object to begin decompression.
// If JPGD_SUCCESS is returned you may then call decode() on each scanline.
int begin_decoding();
// Returns the next scan line.
// For grayscale images, pScan_line will point to a buffer containing 8-bit
// pixels (get_bytes_per_pixel() will return 1). Otherwise, it will always
// point to a buffer containing 32-bit RGBA pixels (A will always be 255, and
// get_bytes_per_pixel() will return 4). Returns JPGD_SUCCESS if a scan line
// has been returned. Returns JPGD_DONE if all scan lines have been returned.
// Returns JPGD_FAILED if an error occurred. Call get_error_code() for a more
// info.
int decode(const void **pScan_line, uint *pScan_line_len);
inline jpgd_status get_error_code() const { return m_error_code; }
inline int get_width() const { return m_image_x_size; }
inline int get_height() const { return m_image_y_size; }
inline int get_num_components() const { return m_comps_in_frame; }
inline int get_bytes_per_pixel() const { return m_dest_bytes_per_pixel; }
inline int get_bytes_per_scan_line() const {
return m_image_x_size * get_bytes_per_pixel();
}
// Returns the total number of bytes actually consumed by the decoder (which
// should equal the actual size of the JPEG file).
inline int get_total_bytes_read() const { return m_total_bytes_read; }
private:
jpeg_decoder(const jpeg_decoder &);
jpeg_decoder &operator=(const jpeg_decoder &);
typedef void (*pDecode_block_func)(jpeg_decoder *, int, int, int);
struct huff_tables {
bool ac_table;
uint look_up[256];
uint look_up2[256];
uint8 code_size[JPGD_HUFF_CODE_SIZE_MAX_LENGTH];
uint tree[JPGD_HUFF_TREE_MAX_LENGTH];
};
struct coeff_buf {
uint8 *pData;
int block_num_x, block_num_y;
int block_len_x, block_len_y;
int block_size;
};
struct mem_block {
mem_block *m_pNext;
size_t m_used_count;
size_t m_size;
char m_data[1];
};
jmp_buf m_jmp_state;
uint32_t m_flags;
mem_block *m_pMem_blocks;
int m_image_x_size;
int m_image_y_size;
jpeg_decoder_stream *m_pStream;
int m_progressive_flag;
uint8 m_huff_ac[JPGD_MAX_HUFF_TABLES];
uint8 *m_huff_num[JPGD_MAX_HUFF_TABLES]; // pointer to number of Huffman codes
// per bit size
uint8 *
m_huff_val[JPGD_MAX_HUFF_TABLES]; // pointer to Huffman codes per bit size
jpgd_quant_t
*m_quant[JPGD_MAX_QUANT_TABLES]; // pointer to quantization tables
int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no
// longer supported)
int m_comps_in_frame; // # of components in frame
int m_comp_h_samp[JPGD_MAX_COMPONENTS]; // component's horizontal sampling
// factor
int m_comp_v_samp[JPGD_MAX_COMPONENTS]; // component's vertical sampling
// factor
int m_comp_quant[JPGD_MAX_COMPONENTS]; // component's quantization table
// selector
int m_comp_ident[JPGD_MAX_COMPONENTS]; // component's ID
int m_comp_h_blocks[JPGD_MAX_COMPONENTS];
int m_comp_v_blocks[JPGD_MAX_COMPONENTS];
int m_comps_in_scan; // # of components in scan
int m_comp_list[JPGD_MAX_COMPS_IN_SCAN]; // components in this scan
int m_comp_dc_tab[JPGD_MAX_COMPONENTS]; // component's DC Huffman coding table
// selector
int m_comp_ac_tab[JPGD_MAX_COMPONENTS]; // component's AC Huffman coding table
// selector
int m_spectral_start; // spectral selection start
int m_spectral_end; // spectral selection end
int m_successive_low; // successive approximation low
int m_successive_high; // successive approximation high
int m_max_mcu_x_size; // MCU's max. X size in pixels
int m_max_mcu_y_size; // MCU's max. Y size in pixels
int m_blocks_per_mcu;
int m_max_blocks_per_row;
int m_mcus_per_row, m_mcus_per_col;
int m_mcu_org[JPGD_MAX_BLOCKS_PER_MCU];
int m_total_lines_left; // total # lines left in image
int m_mcu_lines_left; // total # lines left in this MCU
int m_num_buffered_scanlines;
int m_real_dest_bytes_per_scan_line;
int m_dest_bytes_per_scan_line; // rounded up
int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y)
huff_tables *m_pHuff_tabs[JPGD_MAX_HUFF_TABLES];
coeff_buf *m_dc_coeffs[JPGD_MAX_COMPONENTS];
coeff_buf *m_ac_coeffs[JPGD_MAX_COMPONENTS];
int m_eob_run;
int m_block_y_mcu[JPGD_MAX_COMPONENTS];
uint8 *m_pIn_buf_ofs;
int m_in_buf_left;
int m_tem_flag;
uint8 m_in_buf_pad_start[64];
uint8 m_in_buf[JPGD_IN_BUF_SIZE + 128];
uint8 m_in_buf_pad_end[64];
int m_bits_left;
uint m_bit_buf;
int m_restart_interval;
int m_restarts_left;
int m_next_restart_num;
int m_max_mcus_per_row;
int m_max_blocks_per_mcu;
int m_max_mcus_per_col;
uint m_last_dc_val[JPGD_MAX_COMPONENTS];
jpgd_block_coeff_t *m_pMCU_coefficients;
int m_mcu_block_max_zag[JPGD_MAX_BLOCKS_PER_MCU];
uint8 *m_pSample_buf;
uint8 *m_pSample_buf_prev;
int m_crr[256];
int m_cbb[256];
int m_crg[256];
int m_cbg[256];
uint8 *m_pScan_line_0;
uint8 *m_pScan_line_1;
jpgd_status m_error_code;
int m_total_bytes_read;
bool m_ready_flag;
bool m_eof_flag;
bool m_sample_buf_prev_valid;
bool m_has_sse2;
inline int check_sample_buf_ofs(int ofs) const {
assert(ofs >= 0);
assert(ofs < m_max_blocks_per_row * 64);
return ofs;
}
void free_all_blocks();
JPGD_NORETURN void stop_decoding(jpgd_status status);
void *alloc(size_t n, bool zero = false);
void *alloc_aligned(size_t nSize, uint32_t align = 16, bool zero = false);
void word_clear(void *p, uint16 c, uint n);
void prep_in_buffer();
void read_dht_marker();
void read_dqt_marker();
void read_sof_marker();
void skip_variable_marker();
void read_dri_marker();
void read_sos_marker();
int next_marker();
int process_markers();
void locate_soi_marker();
void locate_sof_marker();
int locate_sos_marker();
void init(jpeg_decoder_stream *pStream, uint32_t flags);
void create_look_ups();
void fix_in_buffer();
void transform_mcu(int mcu_row);
coeff_buf *coeff_buf_open(int block_num_x, int block_num_y, int block_len_x,
int block_len_y);
inline jpgd_block_coeff_t *coeff_buf_getp(coeff_buf *cb, int block_x,
int block_y);
void load_next_row();
void decode_next_row();
void make_huff_table(int index, huff_tables *pH);
void check_quant_tables();
void check_huff_tables();
bool calc_mcu_block_order();
int init_scan();
void init_frame();
void process_restart();
void decode_scan(pDecode_block_func decode_block_func);
void init_progressive();
void init_sequential();
void decode_start();
void decode_init(jpeg_decoder_stream *pStream, uint32_t flags);
void H2V2Convert();
uint32_t H2V2ConvertFiltered();
void H2V1Convert();
void H2V1ConvertFiltered();
void H1V2Convert();
void H1V2ConvertFiltered();
void H1V1Convert();
void gray_convert();
void find_eoi();
inline uint get_char();
inline uint get_char(bool *pPadding_flag);
inline void stuff_char(uint8 q);
inline uint8 get_octet();
inline uint get_bits(int num_bits);
inline uint get_bits_no_markers(int numbits);
inline int huff_decode(huff_tables *pH);
inline int huff_decode(huff_tables *pH, int &extrabits);
// Clamps a value between 0-255.
static inline uint8 clamp(int i) {
if (static_cast<uint>(i) > 255)
i = (((~i) >> 31) & 0xFF);
return static_cast<uint8>(i);
}
int decode_next_mcu_row();
static void decode_block_dc_first(jpeg_decoder *pD, int component_id,
int block_x, int block_y);
static void decode_block_dc_refine(jpeg_decoder *pD, int component_id,
int block_x, int block_y);
static void decode_block_ac_first(jpeg_decoder *pD, int component_id,
int block_x, int block_y);
static void decode_block_ac_refine(jpeg_decoder *pD, int component_id,
int block_x, int block_y);
};
} // namespace jpgd
#endif // JPEG_DECODER_H

View File

@ -1,478 +0,0 @@
// Copyright 2009 Intel Corporation
// All Rights Reserved
//
// Permission is granted to use, copy, distribute and prepare derivative works
// of this software for any purpose and without fee, provided, that the above
// copyright notice and this statement appear in all copies. Intel makes no
// representations about the suitability of this software for any purpose. THIS
// SOFTWARE IS PROVIDED "AS IS." INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES,
// EXPRESS OR IMPLIED, AND ALL LIABILITY, INCLUDING CONSEQUENTIAL AND OTHER
// INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE, INCLUDING LIABILITY FOR
// INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not assume
// any responsibility for any errors which may appear in this software nor any
// responsibility to update it.
//
// From:
// https://software.intel.com/sites/default/files/m/d/4/1/d/8/UsingIntelAVXToImplementIDCT-r1_5.pdf
// https://software.intel.com/file/29048
//
// Requires SSE
//
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <immintrin.h>
#ifdef _MSC_VER
#define JPGD_SIMD_ALIGN(type, name) __declspec(align(16)) type name
#else
#define JPGD_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
#endif
#include <cinttypes>
#define BITS_INV_ACC 4
#define SHIFT_INV_ROW 16 - BITS_INV_ACC
#define SHIFT_INV_COL 1 + BITS_INV_ACC
const short IRND_INV_ROW = 1024 * (6 - BITS_INV_ACC); // 1 << (SHIFT_INV_ROW-1)
const short IRND_INV_COL = 16 * (BITS_INV_ACC - 3); // 1 << (SHIFT_INV_COL-1)
const short IRND_INV_CORR = IRND_INV_COL - 1; // correction -1.0 and round
JPGD_SIMD_ALIGN(short, shortM128_one_corr[8]) = {1, 1, 1, 1, 1, 1, 1, 1};
JPGD_SIMD_ALIGN(short, shortM128_round_inv_row[8]) = {
IRND_INV_ROW, 0, IRND_INV_ROW, 0, IRND_INV_ROW, 0, IRND_INV_ROW, 0};
JPGD_SIMD_ALIGN(short, shortM128_round_inv_col[8]) = {
IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL,
IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL};
JPGD_SIMD_ALIGN(short, shortM128_round_inv_corr[8]) = {
IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR,
IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR};
JPGD_SIMD_ALIGN(short, shortM128_tg_1_16[8]) = {
13036, 13036, 13036, 13036,
13036, 13036, 13036, 13036}; // tg * (2<<16) + 0.5
JPGD_SIMD_ALIGN(short, shortM128_tg_2_16[8]) = {
27146, 27146, 27146, 27146,
27146, 27146, 27146, 27146}; // tg * (2<<16) + 0.5
JPGD_SIMD_ALIGN(short, shortM128_tg_3_16[8]) = {
-21746, -21746, -21746, -21746,
-21746, -21746, -21746, -21746}; // tg * (2<<16) + 0.5
JPGD_SIMD_ALIGN(short, shortM128_cos_4_16[8]) = {
-19195, -19195, -19195, -19195,
-19195, -19195, -19195, -19195}; // cos * (2<<16) + 0.5
//-----------------------------------------------------------------------------
// Table for rows 0,4 - constants are multiplied on cos_4_16
// w15 w14 w11 w10 w07 w06 w03 w02
// w29 w28 w25 w24 w21 w20 w17 w16
// w31 w30 w27 w26 w23 w22 w19 w18
// movq -> w05 w04 w01 w00
JPGD_SIMD_ALIGN(short, shortM128_tab_i_04[]) = {
16384, 21407, 16384, 8867,
16384, -8867, 16384, -21407, // w13 w12 w09 w08
16384, 8867, -16384, -21407, // w07 w06 w03 w02
-16384, 21407, 16384, -8867, // w15 w14 w11 w10
22725, 19266, 19266, -4520, // w21 w20 w17 w16
12873, -22725, 4520, -12873, // w29 w28 w25 w24
12873, 4520, -22725, -12873, // w23 w22 w19 w18
4520, 19266, 19266, -22725}; // w31 w30 w27 w26
// Table for rows 1,7 - constants are multiplied on cos_1_16
// movq -> w05 w04 w01 w00
JPGD_SIMD_ALIGN(short, shortM128_tab_i_17[]) = {
22725, 29692, 22725, 12299,
22725, -12299, 22725, -29692, // w13 w12 w09 w08
22725, 12299, -22725, -29692, // w07 w06 w03 w02
-22725, 29692, 22725, -12299, // w15 w14 w11 w10
31521, 26722, 26722, -6270, // w21 w20 w17 w16
17855, -31521, 6270, -17855, // w29 w28 w25 w24
17855, 6270, -31521, -17855, // w23 w22 w19 w18
6270, 26722, 26722, -31521}; // w31 w30 w27 w26
// Table for rows 2,6 - constants are multiplied on cos_2_16
// movq -> w05 w04 w01 w00
JPGD_SIMD_ALIGN(short, shortM128_tab_i_26[]) = {
21407, 27969, 21407, 11585,
21407, -11585, 21407, -27969, // w13 w12 w09 w08
21407, 11585, -21407, -27969, // w07 w06 w03 w02
-21407, 27969, 21407, -11585, // w15 w14 w11 w10
29692, 25172, 25172, -5906, // w21 w20 w17 w16
16819, -29692, 5906, -16819, // w29 w28 w25 w24
16819, 5906, -29692, -16819, // w23 w22 w19 w18
5906, 25172, 25172, -29692}; // w31 w30 w27 w26
// Table for rows 3,5 - constants are multiplied on cos_3_16
// movq -> w05 w04 w01 w00
JPGD_SIMD_ALIGN(short, shortM128_tab_i_35[]) = {
19266, 25172, 19266, 10426,
19266, -10426, 19266, -25172, // w13 w12 w09 w08
19266, 10426, -19266, -25172, // w07 w06 w03 w02
-19266, 25172, 19266, -10426, // w15 w14 w11 w10
26722, 22654, 22654, -5315, // w21 w20 w17 w16
15137, -26722, 5315, -15137, // w29 w28 w25 w24
15137, 5315, -26722, -15137, // w23 w22 w19 w18
5315, 22654, 22654, -26722}; // w31 w30 w27 w26
JPGD_SIMD_ALIGN(short, shortM128_128[8]) = {128, 128, 128, 128,
128, 128, 128, 128};
void idctSSEShortU8(const short *pInput, uint8_t *pOutputUB) {
__m128i r_xmm0, r_xmm4;
__m128i r_xmm1, r_xmm2, r_xmm3, r_xmm5, r_xmm6, r_xmm7;
__m128i row0, row1, row2, row3, row4, row5, row6, row7;
short *pTab_i_04 = shortM128_tab_i_04;
short *pTab_i_26 = shortM128_tab_i_26;
// Get pointers for this input and output
pTab_i_04 = shortM128_tab_i_04;
pTab_i_26 = shortM128_tab_i_26;
// Row 1 and Row 3
r_xmm0 = _mm_load_si128((__m128i *)pInput);
r_xmm4 = _mm_load_si128((__m128i *)(&pInput[2 * 8]));
// *** Work on the data in xmm0
// low shuffle mask = 0xd8 = 11 01 10 00
// get short 2 and short 0 into ls 32-bits
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
// copy short 2 and short 0 to all locations
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
// add to those copies
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *)pTab_i_04));
// shuffle mask = 0x55 = 01 01 01 01
// copy short 3 and short 1 to all locations
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
// high shuffle mask = 0xd8 = 11 01 10 00
// get short 6 and short 4 into bit positions 64-95
// get short 7 and short 5 into bit positions 96-127
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
// add to short 3 and short 1
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *)&pTab_i_04[16]));
// shuffle mask = 0xaa = 10 10 10 10
// copy short 6 and short 4 to all locations
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
// shuffle mask = 0xaa = 11 11 11 11
// copy short 7 and short 5 to all locations
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
// add to short 6 and short 4
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *)&pTab_i_04[8]));
// *** Work on the data in xmm4
// high shuffle mask = 0xd8 11 01 10 00
// get short 6 and short 4 into bit positions 64-95
// get short 7 and short 5 into bit positions 96-127
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
// (xmm0 short 2 and short 0 plus pSi) + some constants
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *)shortM128_round_inv_row));
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *)&pTab_i_04[24]));
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *)&shortM128_tab_i_26[0]));
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
r_xmm2 = r_xmm1;
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *)&shortM128_tab_i_26[8]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *)&shortM128_tab_i_26[16]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *)shortM128_round_inv_row));
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *)&shortM128_tab_i_26[24]));
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
r_xmm6 = r_xmm5;
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
row0 = _mm_packs_epi32(r_xmm0, r_xmm2);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
row2 = _mm_packs_epi32(r_xmm4, r_xmm6);
// Row 5 and row 7
r_xmm0 = _mm_load_si128((__m128i *)(&pInput[4 * 8]));
r_xmm4 = _mm_load_si128((__m128i *)(&pInput[6 * 8]));
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *)pTab_i_04));
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *)&pTab_i_04[16]));
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *)&pTab_i_04[8]));
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *)shortM128_round_inv_row));
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *)&pTab_i_04[24]));
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *)&shortM128_tab_i_26[0]));
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
r_xmm2 = r_xmm1;
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *)&shortM128_tab_i_26[8]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *)&shortM128_tab_i_26[16]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *)shortM128_round_inv_row));
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *)&shortM128_tab_i_26[24]));
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
r_xmm6 = r_xmm5;
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
row4 = _mm_packs_epi32(r_xmm0, r_xmm2);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
row6 = _mm_packs_epi32(r_xmm4, r_xmm6);
// Row 4 and row 2
pTab_i_04 = shortM128_tab_i_35;
pTab_i_26 = shortM128_tab_i_17;
r_xmm0 = _mm_load_si128((__m128i *)(&pInput[3 * 8]));
r_xmm4 = _mm_load_si128((__m128i *)(&pInput[1 * 8]));
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *)pTab_i_04));
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *)&pTab_i_04[16]));
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *)&pTab_i_04[8]));
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *)shortM128_round_inv_row));
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *)&pTab_i_04[24]));
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *)&pTab_i_26[0]));
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
r_xmm2 = r_xmm1;
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *)&pTab_i_26[8]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *)&pTab_i_26[16]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *)shortM128_round_inv_row));
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *)&pTab_i_26[24]));
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
r_xmm6 = r_xmm5;
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
row3 = _mm_packs_epi32(r_xmm0, r_xmm2);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
row1 = _mm_packs_epi32(r_xmm4, r_xmm6);
// Row 6 and row 8
r_xmm0 = _mm_load_si128((__m128i *)(&pInput[5 * 8]));
r_xmm4 = _mm_load_si128((__m128i *)(&pInput[7 * 8]));
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *)pTab_i_04));
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *)&pTab_i_04[16]));
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *)&pTab_i_04[8]));
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *)shortM128_round_inv_row));
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *)&pTab_i_04[24]));
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *)&pTab_i_26[0]));
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
r_xmm2 = r_xmm1;
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *)&pTab_i_26[8]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *)&pTab_i_26[16]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *)shortM128_round_inv_row));
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *)&pTab_i_26[24]));
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
r_xmm6 = r_xmm5;
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
row5 = _mm_packs_epi32(r_xmm0, r_xmm2);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
row7 = _mm_packs_epi32(r_xmm4, r_xmm6);
r_xmm1 = _mm_load_si128((__m128i *)shortM128_tg_3_16);
r_xmm2 = row5;
r_xmm3 = row3;
r_xmm0 = _mm_mulhi_epi16(row5, r_xmm1);
r_xmm1 = _mm_mulhi_epi16(r_xmm1, r_xmm3);
r_xmm5 = _mm_load_si128((__m128i *)shortM128_tg_1_16);
r_xmm6 = row7;
r_xmm4 = _mm_mulhi_epi16(row7, r_xmm5);
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm2);
r_xmm5 = _mm_mulhi_epi16(r_xmm5, row1);
r_xmm1 = _mm_adds_epi16(r_xmm1, r_xmm3);
r_xmm7 = row6;
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm3);
r_xmm3 = _mm_load_si128((__m128i *)shortM128_tg_2_16);
r_xmm2 = _mm_subs_epi16(r_xmm2, r_xmm1);
r_xmm7 = _mm_mulhi_epi16(r_xmm7, r_xmm3);
r_xmm1 = r_xmm0;
r_xmm3 = _mm_mulhi_epi16(r_xmm3, row2);
r_xmm5 = _mm_subs_epi16(r_xmm5, r_xmm6);
r_xmm4 = _mm_adds_epi16(r_xmm4, row1);
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm4);
r_xmm0 = _mm_adds_epi16(r_xmm0, *((__m128i *)shortM128_one_corr));
r_xmm4 = _mm_subs_epi16(r_xmm4, r_xmm1);
r_xmm6 = r_xmm5;
r_xmm5 = _mm_subs_epi16(r_xmm5, r_xmm2);
r_xmm5 = _mm_adds_epi16(r_xmm5, *((__m128i *)shortM128_one_corr));
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm2);
// Intermediate results, needed later
__m128i temp3, temp7;
temp7 = r_xmm0;
r_xmm1 = r_xmm4;
r_xmm0 = _mm_load_si128((__m128i *)shortM128_cos_4_16);
r_xmm4 = _mm_adds_epi16(r_xmm4, r_xmm5);
r_xmm2 = _mm_load_si128((__m128i *)shortM128_cos_4_16);
r_xmm2 = _mm_mulhi_epi16(r_xmm2, r_xmm4);
// Intermediate results, needed later
temp3 = r_xmm6;
r_xmm1 = _mm_subs_epi16(r_xmm1, r_xmm5);
r_xmm7 = _mm_adds_epi16(r_xmm7, row2);
r_xmm3 = _mm_subs_epi16(r_xmm3, row6);
r_xmm6 = row0;
r_xmm0 = _mm_mulhi_epi16(r_xmm0, r_xmm1);
r_xmm5 = row4;
r_xmm5 = _mm_adds_epi16(r_xmm5, r_xmm6);
r_xmm6 = _mm_subs_epi16(r_xmm6, row4);
r_xmm4 = _mm_adds_epi16(r_xmm4, r_xmm2);
r_xmm4 = _mm_or_si128(r_xmm4, *((__m128i *)shortM128_one_corr));
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm1);
r_xmm0 = _mm_or_si128(r_xmm0, *((__m128i *)shortM128_one_corr));
r_xmm2 = r_xmm5;
r_xmm5 = _mm_adds_epi16(r_xmm5, r_xmm7);
r_xmm1 = r_xmm6;
r_xmm5 = _mm_adds_epi16(r_xmm5, *((__m128i *)shortM128_round_inv_col));
r_xmm2 = _mm_subs_epi16(r_xmm2, r_xmm7);
r_xmm7 = temp7;
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm3);
r_xmm6 = _mm_adds_epi16(r_xmm6, *((__m128i *)shortM128_round_inv_col));
r_xmm7 = _mm_adds_epi16(r_xmm7, r_xmm5);
r_xmm7 = _mm_srai_epi16(r_xmm7, SHIFT_INV_COL);
r_xmm1 = _mm_subs_epi16(r_xmm1, r_xmm3);
r_xmm1 = _mm_adds_epi16(r_xmm1, *((__m128i *)shortM128_round_inv_corr));
r_xmm3 = r_xmm6;
r_xmm2 = _mm_adds_epi16(r_xmm2, *((__m128i *)shortM128_round_inv_corr));
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm4);
// Store results for row 0
//_mm_store_si128((__m128i *) pOutput, r_xmm7);
__m128i r0 = r_xmm7;
r_xmm6 = _mm_srai_epi16(r_xmm6, SHIFT_INV_COL);
r_xmm7 = r_xmm1;
r_xmm1 = _mm_adds_epi16(r_xmm1, r_xmm0);
// Store results for row 1
//_mm_store_si128((__m128i *) (&pOutput[1*8]), r_xmm6);
__m128i r1 = r_xmm6;
r_xmm1 = _mm_srai_epi16(r_xmm1, SHIFT_INV_COL);
r_xmm6 = temp3;
r_xmm7 = _mm_subs_epi16(r_xmm7, r_xmm0);
r_xmm7 = _mm_srai_epi16(r_xmm7, SHIFT_INV_COL);
// Store results for row 2
//_mm_store_si128((__m128i *) (&pOutput[2*8]), r_xmm1);
__m128i r2 = r_xmm1;
r_xmm5 = _mm_subs_epi16(r_xmm5, temp7);
r_xmm5 = _mm_srai_epi16(r_xmm5, SHIFT_INV_COL);
// Store results for row 7
//_mm_store_si128((__m128i *) (&pOutput[7*8]), r_xmm5);
__m128i r7 = r_xmm5;
r_xmm3 = _mm_subs_epi16(r_xmm3, r_xmm4);
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm2);
r_xmm2 = _mm_subs_epi16(r_xmm2, temp3);
r_xmm6 = _mm_srai_epi16(r_xmm6, SHIFT_INV_COL);
r_xmm2 = _mm_srai_epi16(r_xmm2, SHIFT_INV_COL);
// Store results for row 3
//_mm_store_si128((__m128i *) (&pOutput[3*8]), r_xmm6);
__m128i r3 = r_xmm6;
r_xmm3 = _mm_srai_epi16(r_xmm3, SHIFT_INV_COL);
// Store results for rows 4, 5, and 6
//_mm_store_si128((__m128i *) (&pOutput[4*8]), r_xmm2);
//_mm_store_si128((__m128i *) (&pOutput[5*8]), r_xmm7);
//_mm_store_si128((__m128i *) (&pOutput[6*8]), r_xmm3);
__m128i r4 = r_xmm2;
__m128i r5 = r_xmm7;
__m128i r6 = r_xmm3;
r0 = _mm_add_epi16(*(const __m128i *)shortM128_128, r0);
r1 = _mm_add_epi16(*(const __m128i *)shortM128_128, r1);
r2 = _mm_add_epi16(*(const __m128i *)shortM128_128, r2);
r3 = _mm_add_epi16(*(const __m128i *)shortM128_128, r3);
r4 = _mm_add_epi16(*(const __m128i *)shortM128_128, r4);
r5 = _mm_add_epi16(*(const __m128i *)shortM128_128, r5);
r6 = _mm_add_epi16(*(const __m128i *)shortM128_128, r6);
r7 = _mm_add_epi16(*(const __m128i *)shortM128_128, r7);
((__m128i *)pOutputUB)[0] = _mm_packus_epi16(r0, r1);
((__m128i *)pOutputUB)[1] = _mm_packus_epi16(r2, r3);
((__m128i *)pOutputUB)[2] = _mm_packus_epi16(r4, r5);
((__m128i *)pOutputUB)[3] = _mm_packus_epi16(r6, r7);
}

View File

@ -1,186 +0,0 @@
// jpge.h - C++ class for JPEG compression.
// Public Domain or Apache 2.0, Richard Geldreich <richgel99@gmail.com>
// Alex Evans: Added RGBA support, linear memory allocator.
#ifndef JPEG_ENCODER_H
#define JPEG_ENCODER_H
namespace jpge {
typedef unsigned char uint8;
typedef signed short int16;
typedef signed int int32;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef unsigned int uint;
// JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color
// images) are the most common.
enum subsampling_t { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 };
// JPEG compression parameters structure.
struct params {
inline params()
: m_quality(85), m_subsampling(H2V2), m_no_chroma_discrim_flag(false),
m_two_pass_flag(false), m_use_std_tables(false) {}
inline bool check() const {
if ((m_quality < 1) || (m_quality > 100))
return false;
if ((uint)m_subsampling > (uint)H2V2)
return false;
return true;
}
// Quality: 1-100, higher is better. Typical values are around 50-95.
int m_quality;
// m_subsampling:
// 0 = Y (grayscale) only
// 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU)
// 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
// 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
subsampling_t m_subsampling;
// Disables CbCr discrimination - only intended for testing.
// If true, the Y quantization table is also used for the CbCr channels.
bool m_no_chroma_discrim_flag;
bool m_two_pass_flag;
// By default we use the same quantization tables as mozjpeg's default.
// Set to true to use the traditional tables from JPEG Annex K.
bool m_use_std_tables;
};
// Writes JPEG image to a file.
// num_channels must be 1 (Y) or 3 (RGB), image pitch must be
// width*num_channels.
bool compress_image_to_jpeg_file(const char *pFilename, int width, int height,
int num_channels, const uint8 *pImage_data,
const params &comp_params = params());
// Writes JPEG image to memory buffer.
// On entry, buf_size is the size of the output buffer pointed at by pBuf, which
// should be at least ~1024 bytes. If return value is true, buf_size will be set
// to the size of the compressed data.
bool compress_image_to_jpeg_file_in_memory(
void *pBuf, int &buf_size, int width, int height, int num_channels,
const uint8 *pImage_data, const params &comp_params = params());
// Output stream abstract class - used by the jpeg_encoder class to write to the
// output stream. put_buf() is generally called with len==JPGE_OUT_BUF_SIZE
// bytes, but for headers it'll be called with smaller amounts.
class output_stream {
public:
virtual ~output_stream(){};
virtual bool put_buf(const void *Pbuf, int len) = 0;
template <class T> inline bool put_obj(const T &obj) {
return put_buf(&obj, sizeof(T));
}
};
// Lower level jpeg_encoder class - useful if more control is needed than the
// above helper functions.
class jpeg_encoder {
public:
jpeg_encoder();
~jpeg_encoder();
// Initializes the compressor.
// pStream: The stream object to use for writing compressed data.
// params - Compression parameters structure, defined above.
// width, height - Image dimensions.
// channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source
// data. Returns false on out of memory or if a stream write fails.
bool init(output_stream *pStream, int width, int height, int src_channels,
const params &comp_params = params());
const params &get_params() const { return m_params; }
// Deinitializes the compressor, freeing any allocated memory. May be called
// at any time.
void deinit();
uint get_total_passes() const { return m_params.m_two_pass_flag ? 2 : 1; }
inline uint get_cur_pass() { return m_pass_num; }
// Call this method with each source scanline.
// width * src_channels bytes per scanline is expected (RGB or Y format).
// You must call with NULL after all scanlines are processed to finish
// compression. Returns false on out of memory or if a stream write fails.
bool process_scanline(const void *pScanline);
private:
jpeg_encoder(const jpeg_encoder &);
jpeg_encoder &operator=(const jpeg_encoder &);
typedef int32 sample_array_t;
output_stream *m_pStream;
params m_params;
uint8 m_num_components;
uint8 m_comp_h_samp[3], m_comp_v_samp[3];
int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
int m_image_x_mcu, m_image_y_mcu;
int m_image_bpl_xlt, m_image_bpl_mcu;
int m_mcus_per_row;
int m_mcu_x, m_mcu_y;
uint8 *m_mcu_lines[16];
uint8 m_mcu_y_ofs;
sample_array_t m_sample_array[64];
int16 m_coefficient_array[64];
int32 m_quantization_tables[2][64];
uint m_huff_codes[4][256];
uint8 m_huff_code_sizes[4][256];
uint8 m_huff_bits[4][17];
uint8 m_huff_val[4][256];
uint32 m_huff_count[4][256];
int m_last_dc_val[3];
enum { JPGE_OUT_BUF_SIZE = 2048 };
uint8 m_out_buf[JPGE_OUT_BUF_SIZE];
uint8 *m_pOut_buf;
uint m_out_buf_left;
uint32 m_bit_buffer;
uint m_bits_in;
uint8 m_pass_num;
bool m_all_stream_writes_succeeded;
void optimize_huffman_table(int table_num, int table_len);
void emit_byte(uint8 i);
void emit_word(uint i);
void emit_marker(int marker);
void emit_jfif_app0();
void emit_dqt();
void emit_sof();
void emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag);
void emit_dhts();
void emit_sos();
void emit_markers();
void compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits,
uint8 *val);
void compute_quant_table(int32 *dst, int16 *src);
void adjust_quant_table(int32 *dst, int32 *src);
void first_pass_init();
bool second_pass_init();
bool jpg_open(int p_x_res, int p_y_res, int src_channels);
void load_block_8_8_grey(int x);
void load_block_8_8(int x, int y, int c);
void load_block_16_8(int x, int c);
void load_block_16_8_8(int x, int c);
void load_quantized_coefficients(int component_num);
void flush_output_buffer();
void put_bits(uint bits, uint len);
void code_coefficients_pass_one(int component_num);
void code_coefficients_pass_two(int component_num);
void code_block(int component_num);
void process_mcu_row();
bool terminate_pass_one();
bool terminate_pass_two();
bool process_end_of_image();
void load_mcu(const void *src);
void clear();
void init();
};
} // namespace jpge
#endif // JPEG_ENCODER

View File

@ -1,222 +0,0 @@
#pragma once
#include <cstdint>
#include <fstream>
#include <iostream>
#include <memory.h>
#include <memory>
#include <renderd7/external/jpgd.h>
#include <renderd7/external/jpge.h>
#include <sstream>
#include <vector>
struct NVID_Header {
char magic[4]; // Magic
int framerate; // Only Up to 60
int width; // Width
int height; // Height
uint32_t framecount; // Count of Frames
};
struct NVID_Frame {
char magic[4]; // Magic
uint32_t framesize; // Size of Frame
};
struct NVID_Image {
int framenum; // Register of Frame
int w; // Width of Frame
int h; // Height of Frame
int bpp; // bpp of Frame
void *pBuf; // Buffer
};
inline void CreateHeader(NVID_Header &header) {
header.magic[0] = 'N';
header.magic[1] = 'V';
header.magic[2] = 'I';
header.magic[3] = 'D';
}
inline void CreateFrame(NVID_Frame &frame) {
frame.magic[0] = 'N';
frame.magic[1] = 'F';
frame.magic[2] = 'R';
frame.magic[3] = 'M';
}
inline bool CheckHeader(NVID_Header &header) {
if (header.magic[0] == 'N' && header.magic[1] == 'V' &&
header.magic[2] == 'I' && header.magic[3] == 'D')
return true;
return false;
}
inline bool CheckFrame(NVID_Frame &frame) {
if (frame.magic[0] == 'N' && frame.magic[1] == 'F' && frame.magic[2] == 'R' &&
frame.magic[3] == 'M')
return true;
return false;
}
inline std::vector<std::unique_ptr<NVID_Image>>
LoadNVID(const std::string &path) {
std::vector<std::unique_ptr<NVID_Image>> res;
std::ifstream nvid_file(path, std::ios::binary | std::ios::in);
if (!nvid_file) {
std::cerr << "Failed to open NVID file: " << path << std::endl;
return res;
}
NVID_Header header;
nvid_file.read(reinterpret_cast<char *>(&header), sizeof(header));
if (!CheckHeader(header)) {
std::cerr << "Invalid NVID header" << std::endl;
return res;
}
for (int i = 0; i < (int)header.framecount; i++) {
NVID_Frame frame;
nvid_file.read(reinterpret_cast<char *>(&frame), sizeof(frame));
if (!CheckFrame(frame)) {
std::cerr << "Invalid NVID frame" << std::endl;
return res;
}
std::vector<uint8_t> compressed_data(frame.framesize);
nvid_file.read(reinterpret_cast<char *>(compressed_data.data()),
compressed_data.size());
int width, height, components;
unsigned char *decompressed_data = jpgd::decompress_jpeg_image_from_memory(
compressed_data.data(), compressed_data.size(), &width, &height,
&components, 3);
if (!decompressed_data) {
std::cerr << "Failed to decompress JPEG data" << std::endl;
return res;
}
auto image = std::make_unique<NVID_Image>();
image->bpp = components;
image->w = width;
image->h = height;
image->framenum = i;
image->pBuf = decompressed_data;
res.push_back(std::move(image));
}
return res;
}
inline std::vector<std::unique_ptr<NVID_Image>> LoadMemNVID(const void *data,
size_t size) {
std::vector<std::unique_ptr<NVID_Image>> res;
std::istringstream nvid_stream(
std::string(reinterpret_cast<const char *>(data), size));
NVID_Header header;
nvid_stream.read(reinterpret_cast<char *>(&header), sizeof(header));
if (!CheckHeader(header)) {
std::cerr << "Invalid NVID header" << std::endl;
return res;
}
for (int i = 0; i < (int)header.framecount; i++) {
NVID_Frame frame;
nvid_stream.read(reinterpret_cast<char *>(&frame), sizeof(frame));
if (!CheckFrame(frame)) {
std::cerr << "Invalid NVID frame" << std::endl;
return res;
}
std::vector<uint8_t> compressed_data(frame.framesize);
nvid_stream.read(reinterpret_cast<char *>(compressed_data.data()),
compressed_data.size());
int width, height, components;
unsigned char *decompressed_data = jpgd::decompress_jpeg_image_from_memory(
compressed_data.data(), compressed_data.size(), &width, &height,
&components, 3);
if (!decompressed_data) {
std::cerr << "Failed to decompress JPEG data" << std::endl;
return res;
}
auto image = std::make_unique<NVID_Image>();
image->bpp = components;
image->w = width;
image->h = height;
image->framenum = i;
image->pBuf = decompressed_data;
res.push_back(std::move(image));
}
return res;
}
class NVID_Stream {
public:
NVID_Stream(const std::string &path)
: file_(path, std::ios::binary | std::ios::in) {
if (!file_) {
std::cout << "Failed to open NVID file: " << path << std::endl;
return;
} else {
file_.read(reinterpret_cast<char *>(&header_), sizeof(header_));
if (!CheckHeader(header_)) {
std::cout << "Invalid NVID header" << std::endl;
return;
}
}
}
NVID_Stream(const void *data, std::size_t size) {
if (!data || size < sizeof(header_)) {
std::cout << "Invalid NVID data" << std::endl;
return;
} else {
memcpy(&header_, data, sizeof(header_));
if (!CheckHeader(header_)) {
std::cout << "Invalid NVID header" << std::endl;
return;
}
}
}
~NVID_Stream() { file_.close(); }
bool ReadNext(NVID_Image &image) {
if (!file_) {
return false;
}
NVID_Frame frame;
file_.read(reinterpret_cast<char *>(&frame), sizeof(frame));
if (!CheckFrame(frame)) {
std::cout << "Invalid NVID frame" << std::endl;
return false;
}
std::vector<uint8_t> compressed_data(frame.framesize);
file_.read(reinterpret_cast<char *>(compressed_data.data()),
compressed_data.size());
int width, height, components;
unsigned char *decompressed_data = jpgd::decompress_jpeg_image_from_memory(
compressed_data.data(), compressed_data.size(), &width, &height,
&components, 3);
if (!decompressed_data) {
std::cout << "Failed to decompress JPEG data" << std::endl;
return false;
}
image.bpp = components;
image.w = width;
image.h = height;
image.framenum = current_frame_++;
image.pBuf = decompressed_data;
return true;
}
private:
std::ifstream file_;
NVID_Header header_;
int current_frame_ = 0;
};

View File

@ -1,5 +0,0 @@
#pragma once
#include <cstddef>
extern unsigned char npi_intro[];
extern size_t npi_intro_size;

View File

@ -50,13 +50,14 @@
#include <renderd7/stringtool.hpp>
#include <renderd7/thread.hpp>
#define RENDERD7VSTRING "0.9.4"
#define RENDERD7VSTRING "0.9.5"
#define CHANGELOG \
"0.9.5: Remove Npi Intro and NVID Api\n" \
"0.9.4: Implement new Security System\n To prevent from crashes\nImplement " \
"Functiontrace for better\nTiming Tests\nImplement MemAlloc Tracker (only " \
"size)\nAdd some new Overlays (not functional yet)\nComplete Rewrite of " \
"Overlay System\nFixed the FrameEnd Crash\nNew System to get Hardware " \
"Info\nRemoved RD7SR\n0.9.3: Completly Documanted Everything\nFix typo " \
"Info\nRemoved RD7SR\n0.9.3: Completly Documented Everything\nFix typo " \
"in " \
"Sprite::getHeight()\nRemove Deprecated/Useless Stuff\n0.9.2: Add " \
"NpiSplashVideo\nNvid Support(v0.0.1)\nAdd " \
@ -266,8 +267,6 @@ void DrawMetrikOvl();
/// @return success ?
bool DrawImageFromSheet(RenderD7::Sheet *sheet, size_t index, float x, float y,
float scaleX = 1.0, float scaleY = 1.0);
/// @brief Display the Npi-D7 Video Intro (NVID)
void DoNpiIntro();
/// @brief Fade In
/// @param duration Duration in Frames
void FadeIn();

View File

@ -1,5 +0,0 @@
#pragma once
#include <cstddef>
extern unsigned char ui_elements[];
extern size_t ui_elements_size;