#pragma once #include #include #include #include using namespace std; #pragma pack(push, 1) struct BMPFileHeader { uint16_t file_type{ 0x4D42 }; // File type always BM which is 0x4D42 (stored as hex uint16_t in little endian) uint32_t file_size{ 0 }; // Size of the file (in bytes) uint16_t reserved1{ 0 }; // Reserved, always 0 uint16_t reserved2{ 0 }; // Reserved, always 0 uint32_t offset_data{ 0 }; // Start position of pixel data (bytes from the beginning of the file) }; struct BMPInfoHeader { uint32_t size{ 0 }; // Size of this header (in bytes) int32_t width{ 0 }; // width of bitmap in pixels int32_t height{ 0 }; // height of bitmap in pixels // (if positive, bottom-up, with origin in lower left corner) // (if negative, top-down, with origin in upper left corner) uint16_t planes{ 1 }; // No. of planes for the target device, this is always 1 uint16_t bit_count{ 0 }; // No. of bits per pixel uint32_t compression{ 0 }; // 0 or 3 - uncompressed. THIS PROGRAM CONSIDERS ONLY UNCOMPRESSED BMP images uint32_t size_image{ 0 }; // 0 - for uncompressed images int32_t x_pixels_per_meter{ 0 }; int32_t y_pixels_per_meter{ 0 }; uint32_t colors_used{ 0 }; // No. color indexes in the color table. Use 0 for the max number of colors allowed by bit_count uint32_t colors_important{ 0 }; // No. of colors used for displaying the bitmap. If 0 all colors are required }; struct BMPColorHeader { uint32_t red_mask{ 0x00ff0000 }; // Bit mask for the red channel uint32_t green_mask{ 0x0000ff00 }; // Bit mask for the green channel uint32_t blue_mask{ 0x000000ff }; // Bit mask for the blue channel uint32_t alpha_mask{ 0xff000000 }; // Bit mask for the alpha channel uint32_t color_space_type{ 0x73524742 }; // Default "sRGB" (0x73524742) uint32_t unused[16]{ 0 }; // Unused data for sRGB color space }; #pragma pack(pop) struct BMP { BMPFileHeader file_header; BMPInfoHeader bmp_info_header; BMPColorHeader bmp_color_header; std::vector data; BMP(const char *fname) { read(fname); } void read(const char *fname) { std::ifstream inp{ fname, std::ios_base::binary }; if (inp) { inp.read((char*)&file_header, sizeof(file_header)); if(file_header.file_type != 0x4D42) { return;//throw std::runtime_error("Error! Unrecognized file format."); } inp.read((char*)&bmp_info_header, sizeof(bmp_info_header)); // The BMPColorHeader is used only for transparent images if(bmp_info_header.bit_count == 32) { // Check if the file has bit mask color information if(bmp_info_header.size >= (sizeof(BMPInfoHeader) + sizeof(BMPColorHeader))) { inp.read((char*)&bmp_color_header, sizeof(bmp_color_header)); // Check if the pixel data is stored as BGRA and if the color space type is sRGB check_color_header(bmp_color_header); } else { //std::cerr << "Error! The file \"" << fname << "\" does not seem to contain bit mask information\n"; return;//throw std::runtime_error("Error! Unrecognized file format."); } } // Jump to the pixel data location inp.seekg(file_header.offset_data, inp.beg); // Adjust the header fields for output. // Some editors will put extra info in the image file, we only save the headers and the data. if(bmp_info_header.bit_count == 32) { bmp_info_header.size = sizeof(BMPInfoHeader) + sizeof(BMPColorHeader); file_header.offset_data = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader) + sizeof(BMPColorHeader); } else { bmp_info_header.size = sizeof(BMPInfoHeader); file_header.offset_data = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader); } file_header.file_size = file_header.offset_data; if (bmp_info_header.height < 0) { return;//throw std::runtime_error("The program can treat only BMP images with the origin in the bottom left corner!"); } data.resize(bmp_info_header.width * bmp_info_header.height * bmp_info_header.bit_count / 8); // Here we check if we need to take into account row padding if (bmp_info_header.width % 4 == 0) { inp.read((char*)data.data(), data.size()); file_header.file_size += static_cast(data.size()); } else { row_stride = bmp_info_header.width * bmp_info_header.bit_count / 8; uint32_t new_stride = make_stride_aligned(4); std::vector padding_row(new_stride - row_stride); for (int y = 0; y < bmp_info_header.height; ++y) { inp.read((char*)(data.data() + row_stride * y), row_stride); inp.read((char*)padding_row.data(), padding_row.size()); } file_header.file_size += static_cast(data.size()) + bmp_info_header.height * static_cast(padding_row.size()); } } else { return;//throw std::runtime_error("Unable to open the input image file "+std::string(fname)); } } BMP(int32_t width, int32_t height, bool has_alpha = true) { if (width <= 0 || height <= 0) { return;//throw std::runtime_error("The image width and height must be positive numbers."); } bmp_info_header.width = width; bmp_info_header.height = height; if (has_alpha) { bmp_info_header.size = sizeof(BMPInfoHeader) + sizeof(BMPColorHeader); file_header.offset_data = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader) + sizeof(BMPColorHeader); bmp_info_header.bit_count = 32; bmp_info_header.compression = 3; row_stride = width * 4; data.resize(row_stride * height); file_header.file_size = file_header.offset_data + data.size(); } else { bmp_info_header.size = sizeof(BMPInfoHeader); file_header.offset_data = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader); bmp_info_header.bit_count = 24; bmp_info_header.compression = 0; row_stride = width * 3; data.resize(row_stride * height); uint32_t new_stride = make_stride_aligned(4); file_header.file_size = file_header.offset_data + static_cast(data.size()) + bmp_info_header.height * (new_stride - row_stride); } } void write(const char *fname) { std::ofstream of{ fname, std::ios_base::binary }; if (of) { if (bmp_info_header.bit_count == 32) { write_headers_and_data(of); } else if (bmp_info_header.bit_count == 24) { if (bmp_info_header.width % 4 == 0) { write_headers_and_data(of); } else { uint32_t new_stride = make_stride_aligned(4); std::vector padding_row(new_stride - row_stride); write_headers(of); for (int y = 0; y < bmp_info_header.height; ++y) { of.write((const char*)(data.data() + row_stride * y), row_stride); of.write((const char*)padding_row.data(), padding_row.size()); } } } else { return;//throw std::runtime_error("The program can treat only 24 or 32 bits per pixel BMP files"); } } else { return;//throw std::runtime_error("Unable to open the output image file."); } } std::vector DATA() { std::stringstream ss; if (ss) { if (bmp_info_header.bit_count == 32) { write_headers_and_datass(ss); } else if (bmp_info_header.bit_count == 24) { if (bmp_info_header.width % 4 == 0) { write_headers_and_datass(ss); } else { uint32_t new_stride = make_stride_aligned(4); std::vector padding_row(new_stride - row_stride); write_headersss(ss); for (int y = 0; y < bmp_info_header.height; ++y) { ss.write((const char*)(data.data() + row_stride * y), row_stride); ss.write((const char*)padding_row.data(), padding_row.size()); } } } else { } } else { } std::string test11 = ss.str(); std::vector test12(test11.begin(), test11.end()); return test12; } void fill_region(uint32_t x0, uint32_t y0, uint32_t w, uint32_t h, uint8_t B, uint8_t G, uint8_t R, uint8_t A) { if (x0 + w > (uint32_t)bmp_info_header.width || y0 + h > (uint32_t)bmp_info_header.height) { return;//throw std::runtime_error("The region does not fit in the image!"); } uint32_t channels = bmp_info_header.bit_count / 8; for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { data[channels * (y * bmp_info_header.width + x) + 0] = B; data[channels * (y * bmp_info_header.width + x) + 1] = G; data[channels * (y * bmp_info_header.width + x) + 2] = R; if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } void fill_region_df(uint32_t x1, uint32_t y1, uint32_t w, uint32_t h, uint8_t B, uint8_t G, uint8_t R, uint8_t A) { int x0 = x1; int y0 = this->bmp_info_header.height - y1 - h; uint32_t channels = bmp_info_header.bit_count / 8; for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { if (!(x + w > (uint32_t)bmp_info_header.width) || !(y + h > (uint32_t)-1)) { data[channels * (y * bmp_info_header.width + x) + 0] = B; data[channels * (y * bmp_info_header.width + x) + 1] = G; data[channels * (y * bmp_info_header.width + x) + 2] = R; if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } } void manipulate_region(uint32_t x0, uint32_t y0, uint32_t w, uint32_t h, uint8_t A) { int choice, choice2, intensity; cout << "What color do you want to change? " << endl; cout << "Enter 1 for Blue, 2 for Green, 3 for Red " << endl; cin >> choice; cout << "To what color do you want to change it too?" << endl; cout << "Enter 1 for Blue, 2 for Green, 3 for Red " << endl; cin >> choice2; cout << "Enter the intensity of the color. (From 0 to 255) " << endl; cin >> intensity; if (x0 + w > (uint32_t)bmp_info_header.width || y0 + h > (uint32_t)bmp_info_header.height) { return;//throw std::runtime_error("The region does not fit in the image!"); } uint32_t channels = bmp_info_header.bit_count / 8; if (choice==1 && choice2==1) { for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { cout << channels*(y*bmp_info_header.width+x) << endl; //Make blue thing blue if(data[channels * (y * bmp_info_header.width + x) + 0]>80 && data[channels * (y * bmp_info_header.width + x) + 0]<255) { data[channels * (y * bmp_info_header.width + x) + 0] = intensity; data[channels * (y * bmp_info_header.width + x) + 1] = 0; data[channels * (y * bmp_info_header.width + x) + 2] = 0; } //data[channels * (y * bmp_info_header.width + x) + 0] = B; //data[channels * (y * bmp_info_header.width + x) + 1] = G; //data[channels * (y * bmp_info_header.width + x) + 2] = R; if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } if (choice == 1 && choice2==2) { for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { cout << channels*(y*bmp_info_header.width+x) << endl; //Make blue thing green if(data[channels * (y * bmp_info_header.width + x) + 0]>80 && data[channels * (y * bmp_info_header.width + x) + 0]<255) { data[channels * (y * bmp_info_header.width + x) + 0] = 0; data[channels * (y * bmp_info_header.width + x) + 1] = intensity; data[channels * (y * bmp_info_header.width + x) + 2] = 0; } if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } if (choice == 1 && choice2==3) { for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { cout << channels*(y*bmp_info_header.width+x) << endl; //Make blue thing red if(data[channels * (y * bmp_info_header.width + x) + 0]>80 && data[channels * (y * bmp_info_header.width + x) + 0]<255) { data[channels * (y * bmp_info_header.width + x) + 0] = 0; data[channels * (y * bmp_info_header.width + x) + 1] = 0; data[channels * (y * bmp_info_header.width + x) + 2] = intensity; } if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } if (choice == 2 && choice2==1) { for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { cout << channels*(y*bmp_info_header.width+x) << endl; //Make green thing blue if(data[channels * (y * bmp_info_header.width + x) + 1]>80 && data[channels * (y * bmp_info_header.width + x) + 1]<255) { data[channels * (y * bmp_info_header.width + x) + 0] = intensity; data[channels * (y * bmp_info_header.width + x) + 1] = 0; data[channels * (y * bmp_info_header.width + x) + 2] = 0; } if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } if (choice == 2 && choice2==2) { for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { cout << channels*(y*bmp_info_header.width+x) << endl; //Make green thing green if(data[channels * (y * bmp_info_header.width + x) + 1]>80 && data[channels * (y * bmp_info_header.width + x) + 1]<255) { data[channels * (y * bmp_info_header.width + x) + 0] = 0; data[channels * (y * bmp_info_header.width + x) + 1] = intensity; data[channels * (y * bmp_info_header.width + x) + 2] = 0; } if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } if (choice == 2 && choice2==3) { for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { cout << channels*(y*bmp_info_header.width+x) << endl; //Make green thing red if(data[channels * (y * bmp_info_header.width + x) + 1]>80 && data[channels * (y * bmp_info_header.width + x) + 1]<255) { data[channels * (y * bmp_info_header.width + x) + 0] = 0; data[channels * (y * bmp_info_header.width + x) + 1] = 0; data[channels * (y * bmp_info_header.width + x) + 2] = intensity; } if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } if (choice == 3 && choice2==1) { for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { cout << channels*(y*bmp_info_header.width+x) << endl; //Make red thing blue if(data[channels * (y * bmp_info_header.width + x) + 2]>80 && data[channels * (y * bmp_info_header.width + x) + 2]<255) { data[channels * (y * bmp_info_header.width + x) + 0] = intensity; data[channels * (y * bmp_info_header.width + x) + 1] = 0; data[channels * (y * bmp_info_header.width + x) + 2] = 0; } if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } if (choice == 3 && choice2==2) { for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { cout << channels*(y*bmp_info_header.width+x) << endl; //Make red thing green if(data[channels * (y * bmp_info_header.width + x) + 2]>80 && data[channels * (y * bmp_info_header.width + x) + 2]<255) { data[channels * (y * bmp_info_header.width + x) + 0] = 0; data[channels * (y * bmp_info_header.width + x) + 1] = intensity; data[channels * (y * bmp_info_header.width + x) + 2] = 0; } if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } if (choice == 3 && choice2==3) { for (uint32_t y = y0; y < y0 + h; ++y) { for (uint32_t x = x0; x < x0 + w; ++x) { cout << channels*(y*bmp_info_header.width+x) << endl; //Make red thing blue if(data[channels * (y * bmp_info_header.width + x) + 2]>80 && data[channels * (y * bmp_info_header.width + x) + 2]<255) { data[channels * (y * bmp_info_header.width + x) + 0] = 0; data[channels * (y * bmp_info_header.width + x) + 1] = 0; data[channels * (y * bmp_info_header.width + x) + 2] = intensity; } if (channels == 4) { data[channels * (y * bmp_info_header.width + x) + 3] = A; } } } } } int OrganizeAverageRed() { int ColorRed[bmp_info_header.height][bmp_info_header.width]; int ColorGreen[bmp_info_header.height][bmp_info_header.width];; int ColorBlue[bmp_info_header.height][bmp_info_header.width]; float pixels=bmp_info_header.height*bmp_info_header.width; float intensity=0; float sum=0; uint32_t channels = bmp_info_header.bit_count / 8; cout << "The Width of the image is " << bmp_info_header.width << endl; cout << "The height of the image is " << bmp_info_header.height << endl; for (int y = 0; y < bmp_info_header.height; ++y) { for (int x = 0; x < bmp_info_header.width; ++x) { //cout << channels*(y*bmp_info_header.width+x) << endl; //Read red ColorBlue[y][x]=data[channels * (y * bmp_info_header.width + x) + 0]; ColorGreen[y][x]=data[channels * (y * bmp_info_header.width + x) + 1]; ColorRed[y][x]=data[channels * (y * bmp_info_header.width + x) + 2]; } } for(int y=0; y= (uint32_t)bmp_info_header.width || y0 >= (uint32_t)bmp_info_header.height || x0 < 0 || y0 < 0) { return;//throw std::runtime_error("The point is outside the image boundaries!"); } uint32_t channels = bmp_info_header.bit_count / 8; data[channels * (y0 * bmp_info_header.width + x0) + 0] = B; data[channels * (y0 * bmp_info_header.width + x0) + 1] = G; data[channels * (y0 * bmp_info_header.width + x0) + 2] = R; if (channels == 4) { data[channels * (y0 * bmp_info_header.width + x0) + 3] = A; } } void draw_rectangle(uint32_t x0, uint32_t y0, uint32_t w, uint32_t h, uint8_t B, uint8_t G, uint8_t R, uint8_t A, uint8_t line_w) { if (x0 + w > (uint32_t)bmp_info_header.width || y0 + h > (uint32_t)bmp_info_header.height) { return;//throw std::runtime_error("The rectangle does not fit in the image!"); } fill_region(x0, y0, w, line_w, B, G, R, A); // top line fill_region(x0, (y0 + h - line_w), w, line_w, B, G, R, A); // bottom line fill_region((x0 + w - line_w), (y0 + line_w), line_w, (h - (2 * line_w)), B, G, R, A); // right line fill_region(x0, (y0 + line_w), line_w, (h - (2 * line_w)), B, G, R, A); // left line } private: uint32_t row_stride{ 0 }; void write_headers(std::ofstream &of) { of.write((const char*)&file_header, sizeof(file_header)); of.write((const char*)&bmp_info_header, sizeof(bmp_info_header)); if(bmp_info_header.bit_count == 32) { of.write((const char*)&bmp_color_header, sizeof(bmp_color_header)); } } void write_headers_and_data(std::ofstream &of) { write_headers(of); of.write((const char*)data.data(), data.size()); } void write_headersss(std::stringstream &of) { of.write((const char*)&file_header, sizeof(file_header)); of.write((const char*)&bmp_info_header, sizeof(bmp_info_header)); if(bmp_info_header.bit_count == 32) { of.write((const char*)&bmp_color_header, sizeof(bmp_color_header)); } } void write_headers_and_datass(std::stringstream &of) { write_headersss(of); of.write((const char*)data.data(), data.size()); } // Add 1 to the row_stride until it is divisible with align_stride uint32_t make_stride_aligned(uint32_t align_stride) { uint32_t new_stride = row_stride; while (new_stride % align_stride != 0) { new_stride++; } return new_stride; } // Check if the pixel data is stored as BGRA and if the color space type is sRGB void check_color_header(BMPColorHeader &bmp_color_header) { BMPColorHeader expected_color_header; if(expected_color_header.red_mask != bmp_color_header.red_mask || expected_color_header.blue_mask != bmp_color_header.blue_mask || expected_color_header.green_mask != bmp_color_header.green_mask || expected_color_header.alpha_mask != bmp_color_header.alpha_mask) { return;//throw std::runtime_error("Unexpected color mask format! The program expects the pixel data to be in the BGRA format"); } if(expected_color_header.color_space_type != bmp_color_header.color_space_type) { return;//throw std::runtime_error("Unexpected color space type! The program expects sRGB values"); } } };